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Abstract—Liquid cooling systems have better heat dissipation
capabilities than air based ones, and are expected to become a
standard choice in future data centers, due to the ever increasing
power density and heat rejection needs of the compute infrastruc-
ture. A convenient side-effect of implementing liquid cooling is
that it facilitates the efficient recovery of the heat waste. However
designing and managing these heat recovery infrastructures
benefit from having control-oriented models that can accurately
describe how different operating conditions of the to-be-cooled
heat sources will affect the thermal status of the coolant. The aim
of this manuscript is to derive control-oriented models of direct
cooling systems, i.e., systems where the compute infrastructure is
immersed in a vessel filled with dielectric fluid. More specifically
we derive, starting from physical interpretations, a general
lumped-parameters gray box dynamical model that has - as
inputs - the electrical consumption of the heat sources and
the working point of the heat recovery system, and has - as
outputs - the temperature distribution of the coolant in the most
relevant points of the system. Beyond proposing this modelling
methodology we also validate the generalization capabilities of the
obtainable models. In specific, we test the achievable statistical
performances in a field case, plus compare with the ones of
classical black box system identification strategies. We thus report
that in the considered field case our gray box model reached a fit
index of 91.08% when simulating test sets, while the best black
box model we have been able to identify reached (on the same
test sets) fit indexes of only 72.56%.

Index Terms—liquid cooling, gray box modelling, lumped
parameters, system identification, heat recovery

I. INTRODUCTION

Data centers facilities, the supporting backbone of the
telecom industries infrastructure, are composed of rooms filled
with enterprise servers and equipment dedicated to the storing,
managing, and distribution of information [1]. The exponential
growth of demand of data centers services has increased the
associated energy usage to the point that operating data centers
in an efficient way is nowadays crucial.

In particular, the cooling infrastructure within a data center
may account for up to 40% of the total electricity usage, [2].
Increasing the cooling efficiency represents thus an opportu-
nity to reduce data centers energy costs and environmental
impact.

We then notice that most of the currently existing data
centers use air-based cooling systems, in the sense that the heat
produced by the servers is removed by chilled air that is drawn
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through the servers. In typical setups servers are arranged in
racks so that cooling air first enters the room into a so-called
cold aisle placed in front of the racks, then passes through the
servers, and exits on their back into a so-called hot aisle. Here,
hot air rises and moves to a Computer Room Air Conditioning
(CRAC) unit, where air is cooled and recirculated.

However, air is fundamentally an inefficient cooling method
due to its low density and low heat removal capacity [3].
With the emergence of high-performance microprocessors in
servers, this limitation will be more and more tangible [4].
Since liquids have generally far superior thermophysical prop-
erties than air, the expected technological solution is employ-
ing either direct or indirect liquid cooling strategies.

To be more precise, indirect liquid cooling solutions im-
plement a Coolant Distribution Unit (CDU), i.e., a closed
and controlled liquid coolant circuit with two properties: 1)
the coolant is chilled by an external cooling source, and 2)
the circuit is attached to the to-be-cooled electronic devices,
so that their cooling is performed mainly by conduction [5].
The main drawback of this approach is that it has typically
low versatility: it requires indeed installing sealed enclosures,
rack and server levels piping systems, and everything must be
tailored to the specific servers and facility layouts [6].

In Direct Liquid Cooling (DLC) solutions instead servers
are directly immersed in a dielectric fluid (e.g., mineral oil)
that ensures electrical insulation. The main advantages of DLC
solutions are the adaptability of the cooling solution, since no
sealed enclosures and piping are required at the server level,
the reduced density compared to air-based cooling systems,
and the opportunity to use the coolant as an energy storage.

All the various liquid cooling approaches share the pos-
sibility of implementing improved heat recovery strategies.
To be precise, air cooled data centers may exploit heat
pumps to recover the heat from the exhaust air into district
heating supply flows (as being currently done in Stockholm,
Sweden [7]). However, since liquid coolant exhaust has a far
bigger exergetic content than air coolant exhaust, recovering
heat from a liquid cooling system implies smaller needs for
heat pumping – i.e., a more energy efficient process.

To further improve the energetic efficiency of the heat recov-
ery process, the benefits from the advantages of using liquid
cooling may be coupled with the unique opportunities offered
by implementing advanced control systems, that are known to
have the potential of enhancing both systems efficiency and
performance by mostly acting on software components.

Nowadays, it is a common practice in the design of control
systems to make extensive use of Computer Aided Control



Systems Design (CACSD) software tools [8]. These tools
allow to simulate the relevant system dynamics, for a first
assessment of the different control strategies. In order to
setup a useful simulation-centric control system design project,
however, there is a preliminary step to be taken into account,
namely the derivation of a dynamic model, which translates
certain interesting properties of the real system into mathe-
matical equations of the to-be-controlled system.

In the considered scenario, to further maximize the energetic
efficiency of the heat recovery process through advanced
control techniques it is of paramount importance to have de-
tailed quantitative models of the thermal dynamics within the
system, e.g., to implement model predictive control approaches
to decide where to geographically allocate IT loads within
the data center, how to run the various pumps and valves,
etc. In other words, quantitative control-oriented modelling is
instrumental to the maximization of the exergetic content of
the coolant and of the efficiency of the heat recovery step.

However, to the best of our knowledge there are very
few contributions so far that deal with control-oriented liquid
immersion cooling system modeling and analysis. In [9] the
cooling performance of an immersion cooling system with
natural convection for high power servers is evaluated by
Computational Fluid Dynamics (CFD) simulations and actual
experiments. By combining CFD simulations and Matlab &
COMSOL-based models [10] analyzes the cooling system of
servers which are immersed in a dielectric liquid where water
is used to transport the heat outside of the data center. [11]
proposes a model of a cooling system of computational devices
which are in direct contact with the coolant. It thus seems that
there exists a lack of analyses that have control as the final
user of the results.

In this paper we thus consider the specific problem of mod-
elling DLC systems from a thermal dynamics perspective [12].
More precisely, we aim at first drawing general considerations
through analyzing the specific experimental vessel described in
Section II, then at deriving a flexible strategy for the gray-box
modelling of general DLC systems inspired by energy-based
modelling techniques like Power Oriented Graph (POG) [13],
(Section III). In other words, we exploit the concept of power
flows within a physical system to create a lumped parameters
quantitative description of the heat dynamics within a vessel.
To validate the model we then perform an ad-hoc parameters
identification step, and verify its approximation capabilities in
Section IV. In the same section we also compare the statistical
performance of our calibrated gray box against classical black-
box models that have been learned through Prediction Error
Method (PEM) system identification approaches. As a short
anticipation of our results, we report that the tuned gray box
model can simulate test datasets with fit indexes up to 91.08%,
while we haven’t been able to identify black box models with
fit-performances on the same test datasets higher than 72.56%.

II. THE CONSIDERED EXPERIMENTAL DLC TESTBED

The experimental testbed used in this manuscript for both
inspiration and field tests purposes is physically located

within the Infrastructure and Cloud research & test Environ-
ment (ICE) facility at Research Institutes of Sweden (RISE)
Swedish Institute of Computer Science North (SICS) in Luleå,
Sweden, a facility dedicated to testing innovative technologies
for data centers [14]. The considered DLC setup is composed
of a 0.84 m side cubic vessel, built with an aluminum frame
with sealed acrylic glass walls as in Figure 1a, and comprising
an external and fully welded 2 mm thick metal-sheet shell to
eliminate the risk of leaks as in Figure 1b.

(a) Vessel without the external
metallic shell.

(b) Vessel with the external metal-
lic shell.

Fig. 1: Pictures of the considered experimental testbed.

The vessel has been filled with a dielectric oil with low
viscosity and good heat transfer properties, and has been used
to cool four Open Compute Windmill V2 servers donated from
Facebook. The waste heat generated by the servers is removed
from the tank through a dedicated and water-based closed
cooling circuit. More precisely, this cooling circuit comprises
two heat exchangers immersed in the dielectric oil (one being
visible in Figure 1a) and connected through dedicated copper
pipes to an external plate fin water-to-air heat exchanger. A
dedicated fan then forces external air through the fins of this
exchanger, so that the heat produced by the Windmill servers
is eventually dispersed into the air. A schematic representation
of the considered experimental DLC testbed is reported in Fig.
2.

The oil-filled vessel is designed so to exploit natural con-
vection to enhance the cooling effectiveness of the system.
In practice the heating components of the servers (mainly
their CPUs) heat the immediately surrounding oil, that will
naturally rise; simultaneously, the immersed heat exchangers
cool the immediately surrounding oil, that will naturally fall.
This induces a natural oil flow within the vessel, something
beneficial since with this configuration the oil never passes
through a pump, something that can cause pump-degradations
over time.

To understand better the phenomena involved in the servers
cooling process, the vessel comprises a set of temperature
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Fig. 2: A schematic representation of the considered experi-
mental DLC testbed, including: immersed heat exchangers (1),
servers (2) with CPUs a red squares, the pump (P), and the
external water-to-air heat exchanger (3).

sensors and a dedicated Supervisory Control And Data Acqui-
sition (SCADA) system to acquire and manage the collected
information. More precisely, the measurements consist in:
• temperatures of the cooling water flowing into the vessel

and out from the vessel;
• mass flow rate of this water;
• air temperature just before and after the plate fin heat

exchanger (3 in Figure 2);
• flow rate of the air forced by the external air fan associated

to the plate fin heat exchanger;
• power metering of each server’s electrical power usage

(red squares in Figure 2);
• a matrix of thermocouples was immersed in the oil to find

the temperature profile along a desired vertical section of the
vessel.

III. GRAY-BOX MODELLING OF DLC SYSTEMS

We consider a strategy to quantitatively model DLC systems
through an approach that lumps parameters that builds on
an energetic modeling approach. More precisely, we propose
to exploit the concept of power flows within a physical
system, and thus assume that the overall physical system is
composed of elements (nodes) that: a) shall be considered
geographical portions of the system, b) shall be represented
by a thermal capacity and a local temperature, and c) can
exchange heat with other nodes or with the external world.
The total mathematical model can then be derived by the set
of energy conservation equations that hold for each node of
the system.

The benefits of using this modeling technique are variegate:
first, it guarantees satisfying the conservation of energy within
the system, and thus embedding in the model a law that
the system is expected to follow. Moreover, once the system
topology has been defined, the model can be written in a
straightforward and automatic way. This also ensures com-
putationally fast numerical simulations. Finally, adding new
elements to the model does not require to rewrite the model

but only to increase the size of the matrices of the model while
keeping the same logical structure.

The proposed lumped parameters model is characterized by
a low model order. The limited number of parameters can
thus be easily identified from experimental data, and for this
reason the model is suitable for real-time simulations and for
control design purposes. It can indeed be used to analyze the
system dynamics, to predict non-measured variables, to study
the effect of parameters variations, to test different control
strategies, and as a model-based design tool.

A. Constructing the thermal model

Oil nodes: we start by considering that, due to temperature
stratification phenomena, there exist a natural stratification
process that leads to horizontal oil layers with different tem-
peratures. We thus consider a generic division of the tank into
O oil nodes that represent and capture the transient behavior
of these horizontal oil layers. We assume that each oil node
o = 1, . . . , O is characterized by an average thermal capacity
Coil
o and an average temperature T oil

o . We also consider that
there exist thermal heat transfer parameters goilo,o+1 between
connected pairs of oil nodes, i.e., assume that these oil nodes
can exchange heat with the neighbor ones. Defining as doilo,o+1

the distance between the center of nodes o and o+1, parameter
goilo,o+1 can be expressed as goilo,o+1 = goildoilo,o+1, goil is the ther-
mal conductivity of the oil. Also, each oil node is expected to
have some interactions with the external environment through
the walls of the vessel; for this reason we consider heat transfer
coefficients glosso = gwalls

o Awalls
o between each oil node and the

walls of the vessel in contact with this oil layer, where gwalls
o

is the convective heat trasnfer coefficient through the walls
and Awalls

o is the corresponding heat exchange areas. For the
experimental setup considered in Section II we consider O = 3
layers, corresponding to the logical top, middle, and bottom
of the tank.

CPU nodes: we moreover consider the presence of heating
sources (i.e., the CPUs of the servers) that are immersed in
the vessel. We thus model these sources with a number of
CPU nodes, each described by its temperature T cpu

s,c . Here the
subscripts s and c denote respectively the server index and the
index of the CPU within the server s. Moreover, if S is the total
number of servers immersed in the vessel and C is the number
of CPUs per server, s = 1, . . . , S, and c = 1, . . . , C. In the
field case described in Section II the testbed comprises S = 4
servers, each one including C = 2 CPUs. Related to these
nodes, we consider that it is in general possible to measure the
electrical power usage Q̇cpu

s of each server s, and that typically
it is not possible to break down this power usage to each
individual CPU. This implies that the general model needs to
include a parameter that describes how the server power usage
Q̇cpu
s should be broken down on the various individual CPUs.
Heat exchanger nodes: we also consider the presence of a

number of heat exchangers that are immersed within the oil.
Through each heat exchanger, cold water flows at flow rate
φhx in order to extract heat from the coolant within the DLC
system. For this type of nodes we consider that the within-



the-exchanger coolant enters (typically from the bottom) the
heat exchanger at a temperature T hx

in , and exits it (typically
from the top) at a higher temperature T hx

out. For simplicity, we
assume that the oil is in contact with a fictitious immersed
heat exchanger having external area equal to the total area of
both the heat exchangers considered in the experimental setup.

Let moreover T ext.Air be the temperature of the external
air. Denoting the state and input vectors x and u with

x =
[
T oil
1 , . . . , T oil

O , T cpu
1,1 , . . . , T

cpu
S,C

]T
, (1)

u =
[
T ext.Air, T hx

in , φ
hx, Qcpu

1 , . . . , Qcpu
S

]T
, (2)

our general DLC system model becomes

L(θ)ẋ = A(θ)x+B(θ)u+ ` (x,u;θ) (3)

where θ is the vector of all the parameters describing the
model through the opportune matrices L,A,B, and nonlinear
map `. Note that in the remainder of the manuscript we will
omit the dependency of these quantity on θ, assuming it tacit.
More precisely, moreover,
• the square matrix L is diagonal and contains all the

thermal capacities of the respective nodes;
• the square matrix A collects the various heat exchange

coefficients among the various nodes and between the
nodes and the external environment. As an example, and
for simplicity, assume that for the field case described in
Section II we let all the heating sources (i.e., the CPUs
of the servers) be immersed in the top oil node. Then A
becomes

A =

[
A11 A12

A21 A22

]
(4)

where the various blocks Aij are as in (5);
• the matrix B captures the effects of the outdoor temper-

ature and the servers input powers on the temperatures
of the various oil and CPUs nodes. For the field case
described in Section II this matrix becomes

B =

[
B11 03×2 03×4
08×1 08×2 B22

]
(6)

with B11 =
[
gloss1 gloss2 gloss3

]T
and

B22 =



α 0 0 0
1− α 0 0 0

0 α 0 0
0 1− α 0 0
0 0 α 0
0 0 1− α 0
0 0 0 α
0 0 0 1− α


. (7)

Note that the coefficient α in B22 corresponds to the
parameter describing how the server power usage Q̇cpu

s

should be broken down on the various individual CPUs;
• the non-linear vector field ` (x,u) represents the heat

exchanged by the oil nodes and the heat exchanger nodes.
Given that our aim is to obtain a control-oriented numer-
ical representation of the thermal dynamics within the
DLC vessel, we model this heat exchange phenomenon
exploiting the ε-Number of Transfer Units (NTU), [15].
This method is used typically to characterize the heat
transfer in heat exchangers when inlet temperatures of
the fluids and the heat transfer coefficient are available.

More precisely, we define temperatures T hx
i of water in the

heat exchanger portions in contact with the i − th oil layer.
Then, we solve iteratively the following backward equation:

T hx
i = T oili + (T hx

i+1) exp (−NTUi), i = O, . . . , 1, (8)

by initializing T hx
O+1 = T hx

in . It is worth noting that water
exiting the heat exchanger is at temperature T hx

1 , i.e. T hx
out =

T hx
1 . The quantity NTU in (8) is the number of transfer units,

i.e.

NTUi =
ghxAhx

i

φhxcwaterp

, (9)

where cwaterp = 4185 J kg−1 K−1 is the specific heat of water.
Once obtained water temperatures T hx

i , each component of
field ` can be obtained as:

`i =

{
ghxAhx

i ∆TLMTD,i, i = 1, . . . , O

0 i = O + 1, . . . , O + S · C
,

(10)
where ∆TLMTD,i is the logarithmic mean temperature differ-
ence, defined as:

∆TLMTD,i =
T hx
i+1 − T hx

i

log
T hx
i+1 − T oil

i

T hx
i − T oil

i

. (11)

IV. MODEL CALIBRATION AND VALIDATION

We present two different types of results in two separate
subsections:

1) the outcomes of estimating the parameters of the pro-
posed gray box model through a least-squares approach
on top of datasets obtained from the testbed described in
Section II;

2) quantitative and qualitative comparisons of the approx-
imation capabilities of the estimated model against the
ones of classical black box models whose parameters are

A11 =


−goil1,2 −

∑
s,c

gcpus,c − gloss1 goil1,2 0

goil1,2 −goil1,2 − goil2,3 − gloss2 goil2,3

0 goil2,3 −goil2,3 − gloss3

 A12 =

gcpu1,1 gcpu1,2 . . . gcpu4,2

0 0 . . . 0
0 0 . . . 0

 = AT21

A22 = −diag
(
gcpu1,1 , g

cpu
1,2 , . . . , g

cpu
4,2

) (5)



identified through PEM approaches on top of the same
datasets used for the gray box case.

A. Estimating the parameters of the proposed gray box model

We consider a Fisherian approach, and thus the model
parameters to be deterministic. We then assume to be endowed
with a training set D =

{
(x(k),u(k))k=1,...,K

}
and estimate

θ through a classical Least-Squares (LS) approach

θ̂LS = arg min
θ∈R8

+

K∑
k=1

‖x(k)− x̂(k; θ)‖2 (12)

where the simulated x̂(k; θ) states are obtained by propagating
the forward-Euler discrete-time counterpart of the continuous-
time dynamics in (3) initialized with the first measurement in
the training dataset, i.e., with x̂(1; θ) = x(1). Note that with
this notation we assume the dependency of x̂ on the measured
inputs u(k) as tacit. Finally, we notice that the hypothesis
space is a positive quadrant.

For completeness, we plot the traces of the measured input
signals that have been used for both training and testing the
proposed model parameters in Figures 3 and 4. Plots of the
outputs and a discussion on the generalization capabilities of
the model are instead delayed to Section IV-B.
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Fig. 3: Temporal evolution of the measured electrical power
usage of the 4 servers immersed in the considered DLC vessel.
The spikes in the training set correspond to servers shutdowns
and restarts.

For completeness, point-estimates of the values of the
parameters are reported in Table I.

B. Comparing the proposed gray box against classical black
box models

A natural question that shall be asked is whether it is worth
to put the effort of deriving a gray box for this type of system,
or if it was better to take a black box instead.

To answer this methodological question we thus performed
black box PEM identification steps, and then we compared
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Fig. 4: Temporal evolution of the other signals considered as
inputs for the considered DLC vessel. Note how the inputs
in the training set are designed to excite the system around
different working conditions.

parameter meaning point estimate
goil oil conductivity 64.96Wm−1 K−1

gwalls walls heat transf. coeff. {7.46, 2.54, 2.51}Wm−2 K−1

ghx HX heat transf. coeff. 40.48Wm−2 K−1

gcpu CPUs conductance 3.84WK−1

α thermal load partition 0.59

TABLE I: Summary of the point-estimation results for the
parameters of the proposed gray box model. Note that all
the geometrical parameters, e.g., Ahx and doil, have been
measured through direct inspection of the vessel.

the capabilities of both gray box and the best black box
in estimating the outflowing water temperature T hx

out, that is
the most relevant quantity from a heat recovery perspec-
tive. In particular, we consider both classical linear models
(specifically, ARX, ARMAX, OE and BJ) and nonlinear ones
(specifically, Hammerstein-Wiener and wavelet networks with
different standard choices of the input and output nonlinearities
and wavelet functions), and in practice mimicked the standard
steps that what one would follow when facing the problem of
building black box models of the system under consideration.
Inputs of the black box models are all the components of
vectors x and u in (2), while the output is the temperature of
water exiting the heat exchanger, i.e. T hx

out.
We then compare the generalization capabilities of both

gray and (best) black box models through the qualitative
and quantitative means of Figure 5 and Table II respectively.
We reports only the results obtained on the test set, but the
differences observed between training and test sets are small,
suggesting a good generalization capability.

A bit surprisingly, despite expecting to identify a nonlinear
model as the best black box one, among the several tests that
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Fig. 5: Measured vs. simulated output data obtained through
the identified gray and black box models on a test set.

gray box best black box
RMSE 0.27 ◦C 0.91 ◦C

fit 91.08%% 72.56%

TABLE II: Statistical indexes on the test set associated to the
identified gray and black box estimators.

we performed the best black box model that we have identified
is an Output Error model with 3 as the maximum order of the
polynomials in its transfer functions.

As Table II indicates, learning the models using the training
set shown in Figures 3 and 4 led the gray box model to have
far better simulation performance than the black box one on
the test set shown in the same figures. Obviously collecting
more data is expected to lead to better statistical performances,
specially for the black box modelling approach, so that the
conclusions above cannot be considered as general. However,
we also noticed that collecting that specific training set took
8 days, and we have no clear intuitions of how many days of
experimenting one needs to arrive at the breaching point of
equal predictive performance between the two different strate-
gies. Our conclusion is thus that from practical perspectives
the proposed gray box model should be favored.

V. CONCLUSIONS

Taking a control-oriented approach to the problem of mod-
elling liquid cooled systems is important, since it enables
developing model-based control algorithms (e.g. predictive)
for maximizing the efficiency of the associated heat recovery
blocks. Specifically, due to the nature of the phenomena that
are involved in the DLC system (e.g. the heat generation and
thermal heat transfer with very slow and nonlinear dynamics)
and the available a priori expert knowledge, we chosen to
model the system by means of a gray box approach. First
we derived the functional structure of the dynamics of the
system starting from physical principles, then considering the
limited number of model parameters, we applied the classi-
cal frequentist parameters estimation approaches on training
sets corresponding to field experimental campaigns lasting

very few days. We thus verified that the proposed gray box
modelling approach enables to find models with generalization
capabilities that are better than the ones of black box models
that are identified with the very same data. In conclusion, our
field case seems thus that the proposed gray box modelling
approach has practical sense.

The next and main important steps that we foresee as contin-
uation of this research line are essentially two: first, couple our
thermal model with models of different heat recovery systems,
so to have a complete and holistic quantitative picture of the
data center plus heat harvester infrastructure. Second, validate
the whole control-oriented approach by developing control
strategies for maximizing the efficiency of the heat recovery
and test them in real life conditions.
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