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Abstract— We propose and test on real data a two-tier estima-
tion strategy for inferring occupancy levels from measurements
of CO; concentration and temperature levels. The first tier is a
blind identification step, based either on a frequentist Maximum
Likelihood method, implemented using non-linear optimization,
or on a Bayesian marginal likelihood method, implemented
using a dedicated Expectation-Maximization algorithm. The
second tier resolves the ambiguity of the unknown multiplicative
factor, and returns the final estimate of the occupancy levels.

The overall procedure addresses some practical issues of
existing occupancy estimation strategies. More specifically, first
it does not require the installation of special hardware, since
it uses measurements that are typically available in many
buildings. Second, it does not require apriori knowledge on
the physical parameters of the building, since it performs
system identification steps. Third, it does not require pilot data
containing measured real occupancy patterns (i.e., physically
counting people for some periods, a typically expensive and
time consuming step), since the identification steps are blind.

Index Terms— System identification, management of HVAC
systems, Maximum Likelihood, Expectation-Maximization

I. INTRODUCTION

Estimating occupancy levels in the built environment is
an important task both for the control of Heating, Venting
and Air Conditioning (HVAC) systems and for diagnostic
purposes [1], [2], [3], [4]. There are several approaches to
address occupancy estimation: i) use dedicated hardware for
counting people, [5], [6], [7]; ii) use only information from
non-dedicated hardware, already installed in the building or
iii) combine information from both new and pre-existing
hardware. Unfortunately, most of the buildings are not
equipped with dedicated occupancy counting hardware, and
installing new hardware is expensive and time consuming.
There is thus a general interest in understanding how we can
obtain occupancy estimates exploiting basic and generally
available information, such as the CO, concentration and
temperaturs of the various rooms.
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Literature review: Inferring occupancy levels from en-
vironmental signals such as COs levels and temperatures
requires the deployment of models that describe the effects of
occupancy on CO, and temperatures. These models can then
be obtained by means of either considerations involving first
principles and physical laws, or from data-driven techniques.
We hereby focus on the latter choice. Data driven techniques
typically make use black-box appraoches and do not require
additional knowledge on the physics underlying the phe-
nomenon. The model is carried out using opportune learn-
ing techniques (Support Vector Machines (SVMs), Neural
Networks (NNs), Hidden Markov Models (HMMs), system
identification methods, etc.). This usually requires collection
of training datasets containing both environmental signals
and occupancy levels, meaning that the true occupancy has
to be measured for a certain time. Under this umbrella we can
group methods based on electricity consumptions levels [8],
CO;-based features (e.g., averages of the signals in time,
first or second-order temporal differences) [9], [10], [11],
measurements from Passive Infrared (PIR) sensors [12], [13],
activity of the Information Technology (IT) infrastructure
such as access to the Internet [14].

The main drawback of the aforementioned data-driven
techniques is the need of a training set comprising occu-
pancy measurements. Collecting these measurements might
be expensive or not feasible, even for short times. Then,
the natural question is whether we can train models blindly,
i.e., identify models using training sets that do not include
measurements of the occupancy. An answer to this question
can be provided by blind identification methods [15].

Statement of contributions: The object of this paper
is to study how we can estimate occupancy levels in a
room using information of COy concentration levels and
ventilation only. We shall not consider the temperature signal,
as it does not provide significant insights into the occupancy
levels. We propose a novel estimator consisting of two
tiers. Tier-1 is a blind identification step based on either
a frequentist Maximum Likelihood (ML) method or on the
empirical Bayes method. The outcome of tier-1 is, up to a
multiplicative factor, both occupancy levels and a model for
the CO2 dynamics. Tier-2 consists of strategy to compute
the unknown multiplicative factor that best explains the data
and finalizes the occupancy estimation problem. The clear
advantage of our technique is that we do not require any
knowledge of the physical parameters of the built environ-
ment (required when constructing model-based estimators)
and we do not need to measure true occupancy levels for a



certain period of time (required when constructing non-blind
data-driven estimators).

Organization of the manuscript: Section II describes
the underlying assumptions and formulates the problem in
mathematical terms. Section III presents the proposed blind
identification technique. Section IV elaborates on the second
tier of the algorithm. Section V evaluates the effectiveness
of the strategy on some real-world dataset, and Section VI
summarizes our remarks and ideas for future developments.

II. ASSUMPTIONS AND PROBLEM FORMULATION

In this paper we make the following assumptions:

Al) from a properly equipped room we measure:

e y(t) € R, the CO, concentration levels in the room;

e u(t) € R, the actuation levels of the HVAC system,
i.e., how much fresh air is injected in the room:;

e (optional, not strictly required for constructing the
estimation strategy) d(t) € {0,1}, whether the door
of the room has been opened or not;

A2) the time domain of the signals is discrete and finite;
w.l.o.g., the sampling time is 1 and the window length
is IV;

A3) asin [16], [17], [18], [19], [20], the structural form of
the dynamics of the CO2 concentration levels y(t) are
described by the generic Linear Time Invariant (LTI)
model

y(t) = [gy * yl(t) + [gu * ul(t) + [g0 * 0] (£) + e(t) (1)

where * denotes convolution, g,, g, and g, are strictly
causal BIBO-stable impulse responses, o(t) represents
the occupancy pattern, i.e., how many occupants are in
the room at each time instant, and e(¢) is a Gaussian
white noise with unknown variance o2;

A4) the unique available priors for the occupancy levels are:

Adi) o(t) € Ny and o(t) — o(t — 1) is sparse, i.e., the
occupancy levels are positive natural numbers and
tend to remain constant for given periods of time;

A4ii) the maximal variation of the occupancy levels is
bounded and known, i.e., |o(t) — o(t — 1)| < ~Yimax for
all t =1,..., N and for a known p.x (this knowl-
edge can be obtained, e.g., by practical considerations
on the size and usage of the room);

AS) (optional, not strictly required for constructing the
estimation strategy) thanks to the knowledge of the
door opening signal d(t), we know the time instants
t1,...,tyr at which the door is open (and thus at which
the occupancy signal o(t) potentially changes). The
knowledge of d(t) is summarized by the knowledge of
the constraints

0(1) = .= O(tl — 1),
O(tl) = .= O(tg — 1),
. 2
o(ty) = ... =o(N).

Letting t; := 1, this
[o(to),0(t1), ... ,0(ta)] is
[0(1),0(2),...,0(N)].

The considered problem is then to develop a strategy that
estimates the occupancy levels [0(1), 0(t1), ..., o(tar)] using
the available information. In other words, given the facts that
y(1),y(2),... and u(1),u(2),... are measured and known,
and that g,, g, and g, are unknown, estimate o(1), o(2), .. ..

implies that estimating
equivalent to estimate

III. BLIND SYSTEM IDENTIFICATION ALGORITHMS

Considering dynamics (1), it is immediate to recognize
that both signals g,(t) and o(t) are unknown. Since they
appear as a convolution, the problem of estimating the couple
go and o is ill-posed, in the sense that:

Remark 1 (non-identifiability issue) Let §, = L g, and 6 =
«o. Then §,0 = g,0, for every a.

This non-identifiability problem is typical of blind iden-
tification frameworks. We thus devise the existence of two
tiers: the first is the blind problem of estimating g,, gu, 9o
and o (the last two up to the multiplicative factor above)
from the available information. The second is of estimating
the “best” o from the same data used for estimating o.

Postponing the second tier to Section IV, we fo-
cus now on the blind identification step. We then pro-
pose 2 different solutions for this identification pro-
cess: a frequentist ML approach in Section III-B, and a
Bayesian marginal likelihood approach implemented using
Expectation-Maximization (EM) algorithm in Section III-
C. Before proceeding we collect some notation for ease of
reference.

A. Additional notation

Define
y(1) u(1) o(1) e(1)
y=| 1 fu=| 0 |e=| 1 | e=]
y(N) u(N) o(N) e(N)
u(1) 0 0
— u(:2) U(:l) 0 0 6
u(N) u(N.— 1) u(N—=n) 0

Similarly to U, we also define O and Y from the signals o(t)
and y(¢), respectively. Moreover, from the impulse responses
defining dynamics (1) we define

0 0
gy(1) gu(1) go(1)
gy ‘= : gu ‘= : go ‘= .
gy(n) Gu(n) go(n)

which are the vector of truncated impulse response coef-
ficients. The integer n is such that the dynamics defined
by gy,9u,go. approximate well the dynamics defined by



o 9u(1),9u(2),. .. and g,(1),g,(2), ... We

gy(l)vgy(2)a b
also use

A= : “4)

(with In_; the N — 1-dimensional identity matrix) to per-
form time-shift operations on the previous vectors.

To summarize: y and w are measured and unknown; o,
gy, gu and g, are unknown; o is to be estimated.

B. A frequentist ML approach

As suggested in [21], [20], let the dynamics (1) correspond
to the first-order AutoRegressive eXogenus (ARX) system

y(t) = ay(t — 1) + byu(t — 1) + byo(t — 1) + e(t), (5)

where e(t) is white Gaussian with unknown variance a2, or,

in compact form, let

y=(I—al) " 'byAu+ (I —aA) ' b,A0+ (I —al) 'e.

(6)

Let then the (in this subsection deterministic) vector of

the unknown model parameters and occupancy levels be
collected in

ota)]” ()

Since e(t) ~ N(0, 0?), it follows that the likelihood function
is

GARX = [a bu bo 0'2 O(t())

p(Y 5 Oarx) ~ N(my, %) (®)
with
{ my = (I —aA) " 'b,Au+ (I —aA) 'b,A0, (9a)
¥, =0*(I —aA)"H (I —ar)"T. (9b)
Given the priors assumed in Assumption A4, we can use
an ML approach to estimate the unknown Orx, i.€., estimate
the unknown as farx = argmaxy p(y;0). Computing the
ML estimate is then equivalent to solve the optimization
problem
min L(QARX)
Oarx
S.t. O(tl) S N+
0<axl1

i=0,...,M (10)

with L(0arx) the log-likelihood, i.e.,

yy
o2’

Yy := (I —alA)y — b,Au — b,Ao.

L(GAR)() = log det (Ey) +

Notice that the constraint 0 < a < 1 in (10) ensures
stable dynamics. Since problem (10) is mixed-integer non-
linear, its solution requires the implementation of appropriate
numerical schemes. To ease the computational requirements,
we relax the constraint o(¢;) € Ny into o(t;) € Ry,
and propose to solve the relaxed problem using commercial
non-linear constrained optimization tools (e.g., fmincon in
Matlab). Hence, our blind estimation problem becomes

min  L(Oarx)

OArx (11)
st. O<a< 1.

Due to the presence of a term 1/02, problem (11) is highly
non-linear and still numerically demanding. To further dimin-
ish the computational burden it is then possible to exploit an
alternated approach which iterates between optimizing the
model parameters and the occupancy vector, i.e., alternate
the two steps, each of reduced computational complexity: /)
fix the model parameters, and estimate the occupancy signal
given that parameters. The reduced optimization problem
in this case is quadratic, and can be easily solved by
standard optimization routines; 2) fix the occupancy signal,
and estimate the model parameters. Iterating these two steps
converges then to the ML solution [22], [23].

C. A Bayesian marginal likelihood approach

Exploiting the notation of Section III-A, we can rewrite
an approximation of (1), in vector form as

y:ng+Ugu+Ogo+e- (12)

Consider then Bayesian models for the impulse responses
Gy» 9u and g,. More specifically, conforming to the current
trend in the system identification community [24], [25], [26],
consider Gaussian priors of the type

P(gy 5 Ay By) = N (0, Ay Kp,)
p(gu  Aus Bu) = N(07 AuKﬁu)
p(go ; Bo) - N(OvKﬁo) .
with Kg_ representing a covariance matrix (or kernel) drawn
from the family of stable spline kernels [25], [24], [26],.

In this paper, we make use of the first-order stable spline
kernels, defined as

[Kgli j := gmxd)

13)

0<pB<l. (14)

This kernel depends on the hyperparameter 3, which regu-
lates how fast realizations drawn from such a prior decay in
time. Note that p(g,; Ay, 8y) and p(gu; A, Bu) depend also
on the scaling factors )\, and \,, which tune the amplitude
of the unknown impulse responses. This parameter is not
required in the prior of g,, since in this case, due to the
intrinsic non-identifiability of blind identification problems,
it is meaningless to determine it.
Defining then the unknown parameters as

0 == [o(to) oftar) By Ny Bu M Bo 7],
15)
a natural approach to estimate 6 is then to maximize the
marginal likelihood of the output with respect to 6, namely

0 := argmaxlogp (y ; 0), (16)

which is obtained by integrating out the dependence on the
unknown impulse responses g,, g, and g, from the joint

probability p (Y , gy , u ; Go ; 0).
Being the numerical solution of (16) not trivial, we then
resort to an EM scheme. Since

Y, Gy, Gus Go: 0)
p(y; 0)=
( ) P(9y s Gu s Goly; 0)

. a7



the estimate §EM of fgm can be computed by iterating the
two following steps (with k the iteration index):

E step: given

Or = [ox(to) ok(tar) Bok M Bur 03,
N (18)
i.e., the estimate of gy at iteration k, compute
Q (0. 0)=E, g, g0 01yt 08D (¥: 91 9ur 901 0)

' (19)
M step: compute

é\k;Jr] = argmaaxQ (9, ék) .

The general convergence properties of the EM algorithm
assure then that by iterating the two previous steps 6O
asymptotically converges to a (potentially local) maximum of
the marginal likelihood p (y ; €). The procedure is stopped

(20)

either when HﬁkH Gk is below a given threshold or after
a pre-fixed number of iterations. We refer to [27] for details
on the implementation of the EM scheme.

IV. SOLVING THE NON-IDENTIFIABILITY ISSUE

As stated by Remark 1, solving either (11) or (16) does
not solve completely the problem of estimating occupancy
levels, since the estimates g, and o are only determined up to
a scaling factor. In other words, after solving (11) or (16), one
obtains the family of estimates éﬁo and «o parameterized
by a > 0.

The problem then becomes to find a value a* such that
a0 is the best estimator for the true occupancy o in sense
defined later.

To compute o* we thus attempt to exploit Assump-
tion Adii, that is the knowledge (e.g., due to physical
constraints or considerations on the usage of the building)
that the temporal variations of the true occupancy levels are
bounded. Let then

§(t) :=o(t) —o(t—1),  8(t) :=0(t) —o(t — 1),
and consider, by assumption A4ii, we know ~ym.x so that
oty —o(t—1)=:6(t) €T := {—Vmax, - - - »

To better explain our approach to the estimation of «o*, let
us consider the following situations:

+’Ymax} C N

1) if the estimates o were perfect, and if we also_knew
a*, then a*0 = o would hold. Consequently, a*§(¢ ( )=
4(t) would hold, and thus, in this hypothetical case, one
would have a*0(t) € T for each ¢;

2) if the estimates o were perfect, but instead we did not
know «*, then again a*0 = o would hold, but in this
case one would have to compute o*. To compute a*
then one may exploit the fact that a*5 ( ) should be in
I" for each ¢, as said above.

Denoting then the generic element of I' by v;, we know
that for each ¢ there should be a corresponding ~; so
that o5 (t) = 7;, or, equivalently, there exists y(t) € I’

~ 2
that minimizes (a*5(t) - fy(t)) . Considering all the

time instances t’s, then, it follows that o® minimizes
the element-wise distance between the set {a5 (t)} and

v, 1.e.,
N ~
o =arg  min Z (ad(t) — ’y(t))z;
a>0 15
V(t) el

3) in the real-world case, however, we do not know a* and
0 is imperfect, so that there is no « such that a*o is
equal to o. Nonetheless it is meaningful to still identify
«o* as that particular « that minimizes the distance

between the set {ag(t)} and the set I, i.e.,

N
o =arg min Z (ag(t) - 7(t))2. 21
a>0 145
~y(t) eT

This implicitly corresponds to assume that each a*g(t)
is close enough to I' even if the estimates are not perfect.

Unfortunately (21) is a Mixed-Integer Quadratic program
that requires, for every «, to compute the closest element
~(t) € T for each ad(t).

To relax this association burden problem we then propose
to exploit the following ad-hoc classification scheme: for
each « and §(¢) let the associated 7, (t) be

if ag(t) < —Yimax

—Ymax
alt) = [ag(t)J £ [aS(t)J el (22)
Ymax if 00(t) > Yimax

(cf. Figure 1 and its caption). After running classifier (22)
we can thus relax problem (21) into

N

~ 2
o = arg min (aé(t) — Ya (t)) (23)

a>0

Notice that (23) is not a Least Squares (LS) problem since
the decision variable enters also in the classifier v,(t), and
is also not convex; however, with a being a scalar (23) can
be solved by search over and appropriate grid of a-values.

Notice that there is also no guarantee of uniqueness of the
solution, and that at the current state of the art there is no
statistical analysis of the performance of the strategy (not
even if the estimator is consistent). We nonetheless noticed
that it seems performing well from practical perspectives,
and thus plan to perform analyses as future works.

Remark 2 Having knowledge of true and non-null occu-
pancy levels o(t}),...,o(t}) during times t},...,t, leads
to an immediate solution of the non-identifiability issue, that
can be used to skip problem (23). Indeed, letting

O :=[o(t).....0t)]"  O:=lo(t)). ... 0(t)]",

it is then statistically meaningful to compute o* as the min-
imizer of the empirical Mean Square Error (MSE) between
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Fig. 1. Exemplification of the proposed mechanism of solving the non-
identifiability issue through classifier (22), with I' = {-2,...,2}. The
black dots in each panel above represent the various d(t)s; they are scaled
differently in the two panels because they are pre-multiplied by different
as. The ticks in the x-axes represent instead I'. The overall scheme for the
computation of a* then works as follows: for each «, apply (22) and thus
associate to each black dot, i.e., each §(¢), the closest tick in the X—/e\lXiS.
Compute then for that o the sum of the distances between the various 6(t)s
and the x-axis ticks. Get then a* as that « that minimizes this sum of
distances. In this figure, the top panel presents a suboptimal «, while the
bottom panel presents the optimal o*. Here o’ _is worse than o™ since the
average element-wise distance of the various ad (t)s from T is bigger than
the average one of the various a*§(¢)s.

the estimates a© and the real occupancy levels O, ie., as
the solution of the LS problem

o = argmin Ha@ — (9”2 = (@T@> ' oTo. (24

a>0

Notice that the previous problem is well posed only if there
exists at least one index in t},...,t, for which o(t) # 0
and o(t) # 0 simultaneously. In other words, one could skip
the second tier of the estimation strategy proposed in this
paper by collecting information on true occupancy levels
just during one instant. This is essentially different from
other data-driven techniques, where the process of collecting
information on true occupancy levels must be sufficiently
long so to capture properly the dynamics of the system.

V. NUMERICAL EXPERIMENTS

We test our strategy on the dataset used in [10], en-
abling the possibility of comparing different strategies on the
same benchmark. The dataset, available at http://hvac.
ee.kth.se/datasets.html, comprises two weeks of
measurements of CO; and temperature levels from HDH
sensors and measurements of venting, cooling and heating
actuation levels from the central HVAC management system,
occupancy levels manually registered for the whole period
with a time accuracy of 1 minute. Before applying the
algorithms proposed in this manuscript signals have been
resampled using linear interpolation schemes to intervals of
5 minutes.

To quantitatively measure the effectiveness of the estima-
tion strategies we then consider the following performance
indicators: i) the MSE

. _llo—oll;
MSE (0) := ——=,

; (25)
ol

characterizing the relative estimation errors; ii) the accuracy
1 (e—-o)l,

Acc(0) =1 I ,

(26)

reporting how many times the estimates are perfect by means

of the L1 norm of the indicator function

1 (z(1
(( ) 1 ifz(t) >0

1(x):= .
0 otherwise;

1 (z(t)) == (27)

1 (z(N))
iii) the false positive / false negative occupancy detection
rates

~

FP(6) :=8(0),  FN(8):=1-B(1),

describing the ability of discriminating the presence / absence
of occupants in terms of false positives (when the room is
estimated to be occupied while it is not) and false negatives
(when the room is estimated to be empty while it is not) by
means of the empirical power function

(28)

~ 1
B(0) == = 1 (o(k)), (29)
Py
in its turn based on the definition of the sets
Ny = {t st. 1 (o(k)) = 6}, 6 ={0,1}, 30)

dividing the time indexes in the sets N, for the k’s for which
the room was not occupied, and N7, for the k’s for which
the room was occupied.

We then report in Figure 2 the qualitative results of the
estimation procedure. Noticeably, the whole procedure is
able to detect correctly when the room is not occupied, and
detects fairly well also when the room is occupied (even if it
is not extremely accurate in understanding how many people
is in the room).

6 T
measured
S5Hr—F I
41 N
3 - |
2 |- |
l | H-L,H |
| | |
6 T T T
measured
5/—B N
41 |
3 |- |
2 |- |
| I_ILH_IH ]
| | |
07-22 07-23 07-24 07-25 07-26
Fig. 2. Comparison of the estimates obtained combining the two possible

solutions for the blind identification tier, i.e., estimators (11) and (16), with
strategy (24) for solving the non-identifiability issue determined by our
apriori belief ymax = 3.

Table I then reports quantitatively the performance indexes
achieved by the complete estimator, splitting the results for
the two different strategies (11) and (16). As noticed before,
the estimators tend to have on the specific experiment in
consideration good detections of unoccupied rooms.



Estimator MSE  Accuracy FP FN
F 0.409 0.830 0.000 0.285
B 0.351 0.821 0.007 0.121
TABLE I

SUMMARY OF THE PERFORMANCE INDEXES OF THE COMPLETE
ESTIMATORS FOR THE TWO CASES OF SOLVING THE BLIND
IDENTIFICATION PROBLEM WITH (11) OR (16).

VI. CONCLUSIONS

We presented a strategy for the estimation of occupancy
levels in the built environment that satisfies some practical
needs: i) it is data-driven, so that it does not require apriori
knowledges of the physics of the rooms under considerations;
ii) it processes just COo concentration and HVAC actuation
levels, information that is commonly available in modern
buildings; iii) it does not require to perform training steps and
collect pilot data with measurements of the actual occupancy.

The overall estimation strategy cascades a blind system
identification step with an ad-hoc solution for removing
ambiguities in the estimates. More specifically, we proposed
two different ways to solve the blind identification step:
i) a frequentist procedure assuming ARX-type dynamics
with deterministic parameters, and estimating these param-
eters following ML concepts using non-linear optimization
or alternated approach; ii) a Bayesian marginal likelihood
scheme, where the impulse responses have a Gaussian prior,
and their estimation obtained by implementing an EM algo-
rithm.

The strategy was tested on a benchmark dataset, and was
numerically shown to be effective. This suggests that, at least
in environments similar to the one we used for our tests,
there is a potential for blind identification strategies. This
implicitly means that there are cases where it is possible to
separate the dynamics of the environment from their inputs
just by exploiting their fundamental structures and commonly
available signals. We remark that the proposed strategy is
still in its infancy, and it should be studied more. We devise
future works specially in the analysis of its sensitivity to the
various parameters and on the dataset on which it is applied.
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