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Abstract— Quadratic optimization problems appear in sev-
eral interesting estimation, learning and control tasks. To solve
these problems in peer-to-peer networks it is necessary to design
distributed optimization algorithms supporting directed, asyn-
chronous and unreliable communication. This paper addresses
this requirement by extending a promising distributed convex
optimization algorithm, known as Newton-Raphson consensus,
and originally designed for static and undirected communica-
tion. Specifically, we modify this algorithm so that it can cope
with asynchronous, broadcast and unreliable lossy links, and
prove that the optimization strategy correctly converge to the
global optimum when the local cost functions are quadratic.
We then support the intuition that this robustified algorithm
converges to the true optimum also for general convex problems
with dedicated numerical simulations.

I. INTRODUCTION

Distributed quadratic optimization problems arise in sev-
eral estimation and control problems in peer-to-peer net-
works. To cope with real-world requirements, algorithms
need to be designed to work under asynchronous, directed
and faulty communications. Despite being the distributed
optimization literature already rich, most of the existing
contributions have been proved to work in networks whose
communication schemes follow synchronous, undirected, and
often time-invariant information exchange mechanisms.

The first completely distributed optimization algorithms
appearing in the literature rely on primal sub-gradient itera-
tions [4], [5] and on dual ones [7], [8]. To induce robustness
in the computation and improve convergence in the case of
non-strictly convex functions Alternating Direction Method
of Multipliers (ADMM) schemes have been proposed [9],
[10]. Recently contributions have been given to increase the
convergence speed of this technique by means of accelerated
consensus schemes [11], [12]. All these algorithms have
been proved to converge to the global optimum under the
assumption of fixed and undirected topology. Recently sub-
gradient based algorithms for switching topologies have been
proposed in [13] and [1], while gradient-based strategies
supporting time-varying, directed and event-triggered com-
munication schemes are presented in [14] and [15].
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Another class of algorithms exploits the exchange of active
constraints among the network nodes. A constraints con-
sensus algorithm has been proposed in [16] to solve linear,
convex and general abstract programs, see also [17]. These
were the first distributed optimization algorithms working
under asynchronous and direct communication. Recently
the constraint exchange idea has been combined with dual
decomposition and cutting-plane methods to solve distributed
robust convex optimization problems via polyhedral ap-
proximations [18]. Although well-suited for asynchronous
and directed communications, these algorithms mainly solve
constrained optimization problems in which the number of
constraints is much smaller than the number of decision
variables (or vice-versa). Another technique suitable for
asynchronous communication that exploits contraction maps
is the one proposed in [19], but it requires strong assump-
tions on the structure of the cost functions. Other methods
with some degree of connections related to this manuscript
are [1], where the push-sum method is used to establish
distributed optimization on general time-varying directed
graphs, and [2], [3], where authors propose an Newton-like
approach alternative to the one proposed here.

An approach for unconstrained optimization is to exploit
the Newton-Raphson consensus strategy in [20]. This al-
gorithm shows very interesting convergence properties, is
proved to work under synchronous and asynchronous sym-
metric gossip communications [21], but requires undirected
and perfectly reliable communications.

In this paper we propose for quadratic optimization prob-
lems an extension of the Newton-Raphson consensus ap-
proach, so that it handle asynchronous broadcast (rather
than gossip) communications over a directed graph and
lossy communications. Specifically, we combine a push-
sum consensus method proposed in [22], to achieve aver-
age consensus in time-varying directed networks, with the
original Newton-Raphson consensus idea introduced in [20].
We moreover add the technique proposed in [23] to handle
packets losses. In particular, we show that when applied to
quadratic programs the extended Newton-Raphson consensus
algorithm turns out to be a forward product of column
stochastic matrices which, under the broadcast communica-
tion, is shown to be a stationary and ergodic process.

Section II formulates our problem and working assump-
tions. Section III introduces the proposed algorithm and
its proof of convergence, while Section IV adds to it the
robustness to packet losses. Finally, Section V collects some
numerical experiments corroborating our results.



II. PROBLEM FORMULATION AND ASSUMPTIONS

We consider the separable optimization problem

x∗ := min
x

N∑

i=1

fi(x) (1)

under the assumptions that each fi is a quadratic function
known only to node i.

We aim at designing an algorithm solving (1) with the
following features, i.e., being distributed, asynchronous and
robust w.r.t. packet losses. Formally, we consider a network
with set of nodes V = {1, . . . , N} and an asynchronous
broadcast communication protocol with packet losses. That
is, at a given time-instant there is just one node i ∈ V
transmitting information to all its neighbors in a given fixed,
directed and strongly connected graph G = (V, E), while the
others either merely receive the information or do nothing.
Here E ⊆ V×V is the set of edges, i.e., (i, j) ∈ E if there is
an edge from node i to node j. The edge (i, j) models the
fact that node j can receive directly information from node
i. By N out

i we denote the set of out-neighbors of node i, i.e.,
N out
i := {j ∈ V | (i, j) ∈ E}. Similarly, N in

i denotes the set
of in-neighbors of node i, i.e., N in

i := {j ∈ V | (j, i) ∈ E}.
As for the concept of time, each node has its local,

individual timer that randomly, and independently from other
nodes, triggers when to transmit. We assume the following:

Assumption II.1 The waiting times between local trigger-
ing events are exponential i.i.d. random variables for all the
nodes in {1, . . . , N}.

Let then σ(t) ∈ {1, . . . , N}, t = 1, 2, . . . be the sequence
identifying the generic t-th triggered node. Assumption II.1
implies that σ(t) is an i.i.d. uniform process on the alphabet
{1, . . . , N}. Each triggering will induce an iteration of the
distributed optimization algorithm, so that t will indicate the
t-th iteration of the algorithm itself.

To solve (1), each node i stores in its memory a local copy
of the decision variable x, say xi, and referred to as the local
decision variable. With the new notation (1) reads as

min
x1,...,xN

N∑

i=1

fi(xi) s.t. xi = xj for all (i, j) ∈ E . (2)

The strong connectivity of graph G ensures then that the
optimal solution of (2) is given by x1 = . . . = xN = x∗,
i.e., that problems (1) and (2) are equivalent.

III. THE ASYNCHRONOUS NEWTON-RAPHSON
CONSENSUS ALGORITHM

In this section we depart from the symmetric gossip asyn-
chronous Newton-Raphson Consensus (a-NRC) proposed
in [21] and derive a broadcast version of the algorithm that
supports directed communication networks. For readability
reason, we start with an a-NRC algorithm that does not
handle packet losses, and describe the complete version in
Section IV. We then assume that each node i is endowed of

an embedded memory, stores in it the variables xi, gi, gold
i ,

hi, hold
i , zi and yi, and initializes them as

yi = gold
i = gi = −f ′i(0)

zi = hold
i = hi = f ′′i (0)

xi = 0.

Let ε ∈ (0, 1] be a real parameter and let, w.l.o.g., σ(t) =
i, so that node i is the one broadcasting its information
during the t-th iteration of the algorithm. We also define
the following thresholding operator: if c > 0 is the scalar
bounding the second derivatives of the local costs to be
known, then

[z]c :=

{
z if z ≥ c
c otherwise.

A pseudo-code implementation of the a-NRC algorithm is
given in Algorithm 1.

Algorithm 1 asynchronous Newton-Raphson Consensus
(a-NRC)

1: before transmission, node i updates its local variables as

yi ←
1

|N out
i |+ 1

[
yi + gi − gold

i

]

zi ←
1

|N out
i |+ 1

[
zi + hi − hold

i

]

gold
i ← gi

hold
i ← hi

xi ← (1− ε)xi + ε
yi
[zi]c

gi ← f ′′i (xi)xi − f ′i(xi)
hi ← f ′′i (xi)

2: node i then broadcasts yi and zi to its neighbors;
3: each neighbor j ∈ N out

i updates its local variables as

yj ← yi + yj + g(xj)− g(xold
j )

zj ← zi + zj + h(xj)− h(xold
j )

gold
j ← gj

hold
j ← hj

xj ← (1− ε)xj + ε
yj
[zj ]c

gj ← f ′′j (xj)xj − f ′j(xj)
hj ← f ′′j (xj)

A. Convergence of the a-NRC algorithm for quadratic costs

Assume the local costs to be

fi(x) =
1

2
(aix− bi)2, ai 6= 0. (3)

so that the optimal solution of (1) becomes

x∗ =

∑N
i=1 aibi∑N
i=1 a

2
i

.



In the next proposition we show that for the quadratic case
the global convergence of the algorithm is ensured for every
ε ∈ (0, 1].

Proposition III.1 Let the local costs fi be as in (3), As-
sumption II.1 hold true, and ε ∈ (0, 1]. Then the trajectory
t → x(t) almost surely and asymptotically reaches consen-
sus on the optimal solution x∗, i.e.,

P
[
lim
t→∞

x(t) = x∗1
]
= 1.

Proof: To prove the result, we start describing the
a-NRC algorithm in a compact form. Let x, gold, hold, g,
h, y, z, f ′(x), and f ′′(x) denote the vectors of the stacked
corresponding local quantities, e.g.,

x := [x1, . . . , xN ]
T

f ′′(x) := [f ′′1 (x1), . . . , f
′′
N (xN )]

T
.

Let also f ′′(x(t))x(t) and
y(t− 1)

[z(t− 1)]c
indicate element-wise

operations, i.e.,

f ′′(x(t))x(t) :=
[
f ′′1 (xi(t))x1(t), . . . , f

′′
N (xi(t))xN (t)

]T

y(t− 1)

[z(t− 1)]c
:=

[
y1(t− 1)

[z1(t− 1)]c
, . . . ,

yN (t− 1)

[zN (t− 1)]c

]T
.

Let moreover Pi ∈ RN×N , i ∈ {1, . . . , N}, be

Pi := I − eieTi +
1

|N out
i |+ 1

∑

j∈Ni∪{i}
eje

T
i

with ei the i-th vector of the standard orthonormal basis.
Notice moreover that every Pi has nonnegative elements and
is column stochastic, i.e., is s.t. 1TPi = 1T , with 1 the N -
dimensional vector with all the components equal to one.
With this notation, the a-NRC algorithm can be written as

y(t) = Pσ(t)
(
y(t− 1) + g(t− 1)− gold(t− 1)

)

z(t) = Pσ(t)
(
z(t− 1) + h(t− 1)− hold(t− 1)

)

gold(t) = g(t− 1)

hold(t) = h(t− 1)

x(t) = (1− ε)x(t− 1) + ε
y(t− 1)

[z(t− 1)]c
g(t) = f ′′

(
x(t)

)
x(t)− f ′

(
x(t)

)

h(t) = f ′′
(
x(t)

)

Thus, the evolutions of y and z are described by the
time-varying linear dynamics with column-stochastic state
matrices

y(t) = Pσ(t)y(t− 1), y(0) = aibi,

and
z(t) = Pσ(t)z(t− 1), z(0) = a2i .

Notice that, since the column-stochastic state matrices in the
updates above guarantee that z(t) remains positive along the
entire evolution, the [·]c operator is never active.

Write then
y(t)

z(t)
=
y(t)

v(t)

v(t)

z(t)

with the new variable v(t) evolving as

v(t) = Pσ(t)v(t− 1), v(0) = 1,

and let

ωy(t) =
y(t)

v(t)
, ωz(t) =

z(t)

v(t)
.

Following [22], we then consider the algorithm

ξ(t) =
s(t)

ω(t)

where ξ, s,ω ∈ RN and where the dynamics of s and ω are
ruled by

s(t) = D(t)s(t− 1), s(0) = ξ(0)

and
ω(t) = D(t)ω(t− 1), ω(0) = 1,

with D(t) a column-stochastic matrix. Under the assump-
tions that
• {D(t)}t≥0 is a stationary and ergodic sequence of

column-stochastic matrices with positive diagonals;
• E[D] is irreducible;

from [22, Thm IV.1] it follows that

P

[
lim
t→∞

ξ(t) =

(
1

N

N∑

i=1

ξi(0)

)
1

]
= 1.

Now notice that
{
Pσ(t)

}
is a stationary and ergodic

sequence defined on the alphabet {P1, . . . , PN}, that all the
matrices Pi have positive diagonals, and that the matrix

P := E
[
Pσ(t)

]
=

1

N

N∑

i=1

Pi

is s.t. P ij 6= 0 if (i, j) ∈ E . Since the graph G is strongly
connected and the matrix P has positive diagonal elements,
it follows that P is irreducible. Hence we can conclude that,
almost surely,

lim
t→∞

ωy(t) =

(
1

N

N∑

i=1

ỹ(0)

)
1 =

(
1

N

N∑

i=1

aibi

)
1

and

lim
t→∞

ωz(t) =

(
1

N

N∑

i=1

z̃(0)

)
1 =

(
1

N

N∑

i=1

a2i

)
1.

Therefore, again almost surely,

lim
t→∞

x(t) =
(1/N

∑N
i=1 aibi)1

(1/N
∑N
i=1 a

2
i )1

= x∗1.



IV. ROBUSTIFICATION OF THE A-NRC ALGORITHM
TO PACKET LOSSES

Consider the realistic situation where some communica-
tion links might fail, i.e., where node i performs a broadcast
communication but not every out-neighbor might receive
the transmitted information due to, e.g., wireless packets
corruption phenomena.

To cope with this possibility of communication losses
we robustify the a-NRC algorithm 1 against this type of
communication failures. To this aim, we take advantage of
the technique proposed in [23], to obtain average consensus
algorithms converging to the right average over general
directed graphs and in presence of stochastic packet losses.

We thus assume that every node i stores in its memory,
in addition to the variables xi, xold

i , zi, yi, also the variables
bi,y , bi,z , r(j)i,y and r(j)i,z for every j ∈ N in

i . The meanings of
these variables are the following:
• bi,y and bi,z are quantities used by node i to locally

keep track of the total mass of (respectively) states yi
and zi. In this robustified version of the algorithm the
quantities bi,y and bi,z are broadcast by node i to its
out-neighbors;

• r(i)j,y and r
(i)
j,z are instead quantities used by node j to

locally keep track of the total mass of (respectively)
states yi and zi of the neighbor i of j. In other words,
with r

(i)
j,y and r

(i)
j,z node j tracks the status of node i:

when the communication link from i to j is available,
node j updates r

(i)
j,y and r

(i)
j,z with the received bi,y

and bi,z; otherwise, in case of communication failure,
r
(i)
j,y and r(i)j,z remain equal to the previous total masses

received.
A pseudo-code implementation of the robust asynchronous
Newton-Raphson Consensus (ra-NRC) algorithm in pre-
sented in Algorithm 2, where w.l.o.g. σ(t) = i, i.e. node
i is the node triggering iteration t.

A. Convergence of Algorithm 2 for the quadratic costs case

Let us model the communication failures process as fol-
lows:

Assumption IV.1 Let w.l.o.g. node i be the transmitting
node during the generic t-th iteration. Then the generic
neighbor j ∈ N receives information from i with probability
qij , 0 < qij ≤ 1, i.e.,

P
[
(i, j) is reliable

]
= qij , 0 < qij ≤ 1.

Additionally, we assume that the successes of transmissions
are independent among different links and in time.

We can then prove the global convergence properties of
the ra-NRC Algorithm 2 applied to quadratic local costs as
in (3) and for every ε ∈ (0, 1]:

Proposition IV.2 Let the local costs fi be as in (3), As-
sumptions II.1 and IV.1 hold true, and ε ∈ (0, 1]. Then the

Algorithm 2 robust asynchronous Newton-Raphson Consen-
sus (ra-NRC)

1: before transmission, node i updates its local variables as

yi ←
1

|N out
i |+ 1

[
yi + gi − gold

i

]

zi ←
1

|N out
i |+ 1

[
zi + hi − hold

i

]

gold
i ← gi

hold
i ← hi

xi ← (1− ε)xi + ε
yi
[zi]c

gi ← f ′′i (xi)xi − f ′i(xi)
hi ← f ′′i (xi)

bi,y ← bi,y + yi

bi,z ← bi,z + zi

2: node i then broadcasts to its neighbors bi,y and bi,z to
its neighbors;

3: each neighbor j ∈ N out
i updates (if receiving the packet,

otherwise it does nothing) its local variables as

yj ← bi,y − r(i)j,y + yj + gj − gold
j

zj ← bi,z − r(i)j,z + zj + h(xj)− h(xold
j )

gold
j ← gj

hold
j ← hj

xj ← (1− ε)xj + ε
yj
[zj ]c

gj ← f ′′i (xj)xi − f ′i(xj)
hj ← f ′′i (xj)

r
(i)
j,y ← bi,y

r
(i)
j,z ← bi,z

trajectory t→ x(t) reaches almost surely and asymptotically
consensus on the optimal solution x∗, i.e.,

P
[
lim
t→∞

x(t) = x∗1
]
= 1.

Proof: assume that, for i ∈ V , node i stores in memory
also the fictitious variables vi, bi,v and r

(j)
i,v for j ∈ N in

i ,
where vi(0) = 1, bi,v(0) = 0 and r

(j)
i,v (0) = 0 for j ∈ N in

i .
Assume that these fictitious variables are updated in parallel
to the other variables stored memory in by the nodes as
follows: if σ(t) = i, then

(i) node i updates vi and bi,v as

vi ←
1

|N out
i |+ 1

vi

bi,v ← bi,v + vi

(ii) node i then broadcasts to its neighbors the quantity
bi,v;



(iii) each neighbor j ∈ N out
i updates (if receiving the

packet, otherwise it does nothing) its local variables
vj and r(i)j,v as

vj ← bi,v − r(i)j,v
r
(i)
j,v ← bi,v

Now let v(t) = [v1(t), . . . , vN (t)]
T . Since the [·]c operator

is never active in this quadratic case, we can write that

y(t)

z(t)
=
y(t)

v(t)

v(t)

z(t)
.

Observe that, as before, if ti is the first t for which σ(t) = i
or σ(t) = j with i ∈ N out

j , i.e., the first t for which i either
broadcasts or receives information for the first time, then for
t < ti it holds that

gi = aibi, gold
i = 0, hi = a2i , hold

i = 0,

while for t ≥ ti it holds that

gi(t) = gold
i (t) = aibi, hi(t) = hold

i (t) = a2i .

It follows that ωy(t) = y(t)
v(t) , ωz(t) = z(t)

v(t) can be
suitably seen as two instances of the consensus algorithm 3
described in Appendix and with initial condition y(0) =
[a1b1, . . . , aNbN ], z(0) =

[
a21, . . . , a

2
N

]
and v(0) = 1. Thus,

since Assumptions II.1 and IV.1 hold true, it follows that

lim
t→∞

ωy(t) =

(
1

N

N∑

i=1

aibi

)
1,

lim
t→∞

ωz(t) =

(
1

N

N∑

i=1

a2i

)
1,

that is sufficient for our claims.

V. NUMERICAL EXPERIMENTS

Aims: Proposition IV.2 ensures the global convergence
of Algorithm 2 for the quadratic case and for every ε ∈ (0, 1].
Numerical simulations nonetheless suggest that Algorithm 2
is converging also for non-quadratic local costs, for oppor-
tunely tuned ε ∈ (0, 1], as for the original synchronous
version in [20].

In this section we thus aim at describing qualitatively
the behavior of the single nodes while running the ra-NRC,
and comment the effects of choosing different ε’s on the
convergence speed / properties of the algorithm for non-
quadratic costs.

Notice that we do not compare the ra-NRC with the two
currently most famous distributed optimization techniques
present in literature, namely ADMM [4], [5] and subgradient
schemes [10], since: i) as for the ADMM, at the best of
our knowledge there are no competing algorithms, i.e., there
are no ADMM-based schemes that can perform broadcast
asynchronous optimization tasks while being robust to packet
losses issues. ii) as for subgradient schemes, it has already
been numerically shown in [20] that these algorithms are
outperformed by Newton-Raphson (NR)-based procedures.

This indeed mimics the situation of centralized optimization
procedures, where exploiting information on higher deriva-
tives generally improves the convergence properties of the
optimization routine.

Numerical setup: as local costs we consider quadratic
functions, i.e.,

fi(x) =
1

2
(α′ix− α′′i )

2 (4)

sums of exponentials, i.e.,

fi(x) = α′i exp (α
′′
i x) + α′′′i exp (−α′′′′i x) (5)

with parameters randomly generated as either [α′i, α
′′
i ] ∼

U [0, 1]
2 or [α′i, . . . , α

′′′′
i ] ∼ U [0, 1]

4.
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1
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Fig. 1. Examples of the local costs considered for the numerical experi-
ments (dashed lines) and of the relative global costs (solid lines).

The considered network is instead the random geometric
network shown in Figure 2.

Fig. 2. The random geometric network considered for the numerical
experiments of this section. It is composed by N = 15 nodes uniformly
deployed in [0, 1]2 and with communication radius 0.35.

Communications are broadcast, asynchronous and with
packet losses that occur independently on each link time with
probability 0.2. In other words, a packet sent simultaneously
to nodes i and j may reach i but not j.

Results: Figure 3 describes the effect of the choice
of the design parameter ε on the convergence speed of
the algorithm by considering how fast the average guess
1
N

∑
i xi(t) approaches the optimum x∗ both under quadratic

and exponential local costs.
As expected, increasing ε leads to faster convergence

speeds. Nonetheless, for non-quadratic cases too big ε’s
may lead to instability and diverging phenomena (a common
issue of schemes that are based on separation of time-scales
concepts). We remark that dynamically finding the best ε
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Fig. 3. Comparisons of the dependence of the convergence speed of the
algorithm on ε for different cost functions.

(that depends on several factors, mainly the curvature of the
local costs and the topology of the communication network)
is still an open issue.

Regarding the behavior of the single nodes, Figure 5 plots
the evolutions of the local the relative errors for ε = 0.1.
We can notice that the qualitative behavior of the various
nodes is the same, independently of the fact of being in the
periphery of the network or not. It is also possible to notice
that the algorithm has linear convergence time (fact that is
driven by the linearity of the consensus algorithm underlying
the information exchange process).

VI. CONCLUSIONS

To be able to arrive to real-world implementations, dis-
tributed algorithms are required to seamlessly cope with
packet-losses, asynchronous communications, and directed
links. At the same time, optimization algorithms are sup-
posed to be fast, i.e., return accurate estimates of the opti-
mum after a limited amount of exchanged information.

These two considerations drove the development of this
paper, presenting a robustification of the distributed Newton-
Raphson algorithm proposed initially in [20]. More specif-
ically, we added to the original procedure a set of features
that enable this algorithm to work even with asynchronous,
unreliable and broadcast communication protocols. This con-
stitutes in our opinion an advantage with respect to ADMM
schemes, that at the best of our knowledge do not tolerate
these working conditions.

We then notice that this paper opens more questions than
how many it closes, since the proofs of convergence are only
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Fig. 4. Evolution of the local states of the various nodes for ε = 0.1.
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for quadratic local costs. Thus proving convergence prop-
erties under general costs and unreliable communications
scenarios is still an open question.

Moreover the algorithm, that in our vision may become the
heart of a truly distributed interior point method, still lacks of
important capabilities: i) tuning ε on line, that requires nodes
to be able to detect diverging behaviors; ii) updating the state
x with partition-based approaches, meaning that (in the same
spirit of [24]) each node keeps and updates only some of the
components; iii) accounting for equality constraints in the
state of the form Ax = b.
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APPENDIX

We here propose a robust asynchronous distributed average
consensus algorithm that is based on lossy broadcast commu-
nications. Due to lack of space we recall but omit to prove its
convergence properties; the proof can nonetheless be easily
obtained by following the techniques proposed in [25].

Consider then the strongly connected graph G of Sec-
tion II, and assume that each node i = 1, . . . , N to be
endowed with a deterministic initial value vi. Nodes then
aim to reach consensus to the average of these initial values,
i.e., compute v∗ = 1

N

∑N
i=1 vi, in a distributed and iterative

fashion.
As for the previous algorithms, we assume that during

each iteration of the algorithm there is only one node, say i,
transmitting information to its neighbors. For j ∈ N out

i , we
assume that node j can either receive the information sent
by node i or do not receive it, if a packet loss occurs.

Additionally assume that every node i stores in its memory
the variables xi, zi, yi, bi,y , bi,z and the variables r(j)i,y , and
r
(j)
i,z for j ∈ N in

i , where xi(0) = 0, zi(0) = 1, yi(0) = vi,
bi,y(0) = bi,z(0) = 0 and r(j)i,y (0) = r

(j)
i,z (0) = 0 for j ∈ N in

i .
Without loss of generality, suppose node i is the trans-

mitting node during the t-th iteration. Then the robust
asynchronous Average Consensus (ra-AC) algorithm reads
as:

Proposition VI.1 Let Assumptions II.1 and IV.1 hold true,
and let x := [x1, . . . , xN ]

T . Then the trajectory t → x(t)
reaches almost surely the asymptotic consensus on the value
v∗, i.e.,

P
[
lim
t→∞

x(t) = v∗1
]
= 1.



Algorithm 3 robust asynchronous Average Consensus
(ra-AC)

1: before transmission, node i updates its local variables as

yi ←
1

|N out
i |+ 1

yi

zi ←
1

|N out
i |+ 1

zi

bi,y ← bi,y + yi

bi,z ← bi,z + zi

2: node i then broadcasts to its neighbors bi,y and bi,z;
3: each neighbor j ∈ N out

i updates (if receiving the packet,
otherwise it does nothing) its local variables as

yj ← bi,y − r(i)j,y + yj

zj ← bi,z − r(i)j,z + zj

xj ←
yj
zj

r
(i)
j,y ← bi,y

r
(i)
j,z ← bi,z

where the update of xj is performed only if zj 6= 0,
otherwise xj is left unchanged.


