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Abstract— This paper investigates the problem of calibrating
sensors affected by (i) heteroskedastic measurement noise and
(ii) a polynomial bias, describing a systematic distortion of
the measured quantity. First, a set of increasingly complex
statistical models for the measurement process was proposed.
Then, for each model the authors design a Bayesian parameters
estimation method handling heteroskedasticity and capable to
exploit prior information about the model parameters. The
Bayesian problem is solved using MCMC methods and recon-
structing the unknown parameters posterior in sampled form.
The authors then test the proposed techniques on a practically
relevant case study, the calibration of Light Detection and
Ranging (Lidar) sensor, and evaluate the different proposed
procedures using both artificial and field data.

I. INTRODUCTION

Assume that a measurement system is affected by a nonlinear
bias and heteroskedastic measurement noise, so that both the
bias and the variance of the measurement noise depend on
the state of the system. A practically relevant case study
considered in this paper is the Lidar sensor, that evaluates
the distance to a target by illuminating that target with a
pulsed laser light, and measuring the reflected pulses on CCD
camera (for detailed description about the Lidar construction
and operation see [8], [11]). An example of dataset is
depicted in Figure 1. The measurements are taken by a
wheeled robot mounting a triangulation Lidar, moving on a
flat surface away from a fixed obstacle, nominally following
a straight path, see Figure 2. Figure 1 shows clearly that the
measurements collected are corrupted by a heteroskedastic
noise.

Assume that, as in the particular case of Figure 1, the user
has information on the process (i.e., on the actual position
of the robot) but no model of the sensor from a data-sheet
or other sources. The general problem is then to characterize
the bias and variance of the sensor starting from the available
training set (see Section II for a more formal statement).

This research deals with the sensor calibration problem,
i.e. with the problem to estimate numerically the parame-
ters describing the error noise, assuming a suitable model
structure has been selected. Notice that this paper discuss
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the calibration of the distance measuring mechanism not the
rotating mechanism of the sensor.

This paper follows the following approach: starting from a
generic training set like the one in Figure 1, the paper: 1) lists
a set of different plausible models of the heteroskedasticity
of generic sensors; 2) derives for each model structure a
tailored model-parameter estimation algorithm.

Literature review

Estimating model parameters with presence of heteroskedas-
ticity is a challenging task and usually Ordinary Least
Squares (OLS) can be used, the OLS solution to the param-
eter estimation problem is shown to be unbiased but also an
inefficient estimator especially at large heteroskedasticity [1],
however, the OLS gives biased estimate of the variance and
incorrect confidence intervals and statistical inference [2].

The noise structure in the heteroskedastic systems can
either be dependent on the states or independent on the states.
For the case where the noise structure is independent on
the states, Gibbs sampler proposed for inference in a linear
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Fig. 1. Example of distance measurements collected by a triangulation
Lidar . The measurements are visibly corrupted by a heteroskedastic noise.

Fig. 2. Photo of the experimental setup used for collecting the dataset.
The photo shows the robot, the Lidar and the wooden target.



heteroskedastic Bayesian model by [3], the measurements
were assumed to be independent and identically distributed
with Student-t distribution, the author also showed the equiv-
alence in posteriors between the Student-t measurements
case and an appropriate mixture of Gaussian measurements.
However, this research will focus on the case where the
noise structure depends on the states, more specifically when
the noise structure is a function with unknown parameters
of the states. This kind of models have been studied in
econometrics literature, for example [4] proposed a two-step
estimation procedure for models where the i disturbance
variance o; is of the form o; = 0233;\ where x; is the state,
o? and A are unknown model parameters. This procedure
has been examined in details for more general variance
models similar to o; = e®* and compared with the iterative
Maximum Likelihood (ML) by [5]. The analysis of [5] shows
that the two-step estimation procedure is inconsistent in the
heteroskedasticity parameters and then proposed a modified
two-step estimation procedure which is consistent. Bayesian
estimators for heteroskedastic systems proposed by [6] for
variance models similar to o; = sz; A [7] extended the
Bayesian approach of [6] to multidimensional and estimated
the parameters through opportune Markov chain Monte Carlo
(MCMC) sampler then compared the performance with the
previous estimators (the two-step and iterative ML), it has
been shown that Bayesian estimators give better performance
in the Root-Mean-Square Error (RMSE) and the interquartile
range sense. The previously cited papers [4], [5], [6], [7]
assume models useful for econometrics, however in this
research, the authors will present Bayesian analysis for pa-
rameter estimation in generic non-linear and heteroskedastic
systems, in which, the non-linearity is modeled through a
polynomial of opportune order. An example of systems with
heteroskedastic noise and non-linear bias is the triangulation
Lidar used with robotic applications.

The calibration of the intrinsic parameters of triangu-
lation Lidars have been studied in [8], [9], [10], [11],
[12], [13]. More specifically, the technology introduced in
[8] performed an early-assessment of the potential for the
triangulation Lidars technology. These devices are affected
by nonlinearities, as discussed in [9], and by the color of
the target, as discussed in [10]. A first calibration procedure
that builds on a statistical model of the sensor was proposed
in [9] where the model was assumed to be homoskedastic.
Heteroskedastic model for the sensor were proposed by [11]
with a more general calibration procedure based on Weighted
Least Squares (WLS) for parameter estimation and Akaike
Information Criterion (AIC) for model selection. This model
was extended in [12] to include the beam angle, also a
calibration procedure suitable for targets with flat surfaces
was proposed. In addition, there have been proposed calibra-
tion procedures that do not require independent sources of
groundtruth information (unknown states), as in [13] where
an approximated Expectation Maximization (EM) procedure
is used for joint parameter and states estimation.

Notice that the calibration procedure proposed in [13]
has been the inspirational work for the current manuscript.
The problem of [13] is nonetheless that it maximizes an
approximated likelihood function. Here, instead, this research
aims at:

i) maximize the exact likelihood function rather than an
approximated one;

ii) using our prior information about the process under the
Bayesian framework;

iii) make a preliminary study for the more generic case
(and of greater practical importance) that the authors
would like to solve in the future, in which, the states
are unknown;

iv) generalize the procedure so that it can go beyond the
triangulation Lidar case and be applied to more general
frameworks.

Statement of contributions

The authors consider the problem of estimating static mea-
surement models starting from training set of inputs-outputs
pairs (see Section II for more details).

Our contributions are thus:

i) propose a set of different statistical models for the
measurement process that capture the most common sta-
tistical behaviors of static (i.e., not subject to hysteresis)
Sensors;

ii) design a set of different parameters estimation tech-
niques that solve the sensor calibration problem de-
scribed above;

iii) implement the various estimation algorithms above on
some real case scenarios and assess their performance
using fit indexes and computational complexity perspec-
tives.

Structure of the manuscript

The next Section II presents the problem formulation. Then
Sections III describes the details of the parameter estimation
methods. The obtained Numerical results for both simula-
tions and real datasets will be presented in Section IV. And
finally the conclusion in Section V.

II. PROBLEM STATEMENT

Assume that an unspecified sensor transforms the state
z; € R of an unspecified system into a corresponding
measurement y; following the nonlinear static model

Yi = fmean (931) + froise (xz) Vi (D
where the term fe.n (z;) models the bias as a static non-
linear function depending on the state of the system, the
static function fpise (+) captures the heteroskedasticity of the
measurement system and v; ~ A (0, 1) and independent and
identically distributed (iid).



3 time / measurement index (¢ € {1,...,M})
T training dataset

1% verification dataset

M number of measurements in training dataset

L number of measurements in verification dataset

x; value of the state at time ¢

Yi sensor measurement at time 4

k index of the MCMC run

kmazx maximal number of MCMC iterations

Kmin burn-in MCMC iterations

fimean () (static) measurement bias (see (1))

a parameters of the polynomial defining fmean (-)
(see (3))

N model order for the bias term fmean

Lo, Yo, Ta parameters defining the prior for a (see (5))

Gy Vandermonde matrix associated to the set of states @
(see (4))

Jroise () (static) heteroskedastic standard deviation of the mea-
surement noise (see (6))

P power factor defining the actual variance of the noise
term froise (see (6))

oy nominal standard deviation of the measurement noise
(see (6))

Ty =0, R nominal precision of the measurement noise

ay,by parameters defining the prior for o, (see (7))

Vi normalized measurement noise at time %

M covariance of the measurement noise vector (see (2))

¥ acceptance probability

8,6 proposal variances

TABLE I
SUMMARY AND MEANING OF THE MOST COMMON SYMBOLS.

Assume that, during an ad-hoc sensor calibration ex-
periment, M measurements have been collected from (1)
at perfectly known values of the state x;. The vector of
measurements can then be written compactly as

Y = fimean ($72 + froise (:I)) Ov
where vy = [y1,...,ym] , € = [z1,... ,xM]T, v =
Vi, ., VM]T. Foean () € RM and fooie (£) € RM s
defined similarly (noticing that it can be specialized in
three different ways conforming with (6)), and ® indicates
the Hadamard product. The measurement noise covariance
matrix is therefore

Y, = diag (fnoise(ml)Qa ) fnoise(x]\l)Q) . (2
The authors assume also that the user steers the unspecified
system opportunely in a way that is informative for cali-
brating the sensor. For instance, in the case of Figure 1, the
sensor is attached to a wheeled robot moving with nominally
constant speed on a flat surface towards a fixed target, so to
“explore” all the potential statistical dependencies of y; on
Zj.

For what concerns fean (2;) the authors assume that it
can be captured through a polynomial of opportune order
N, ie.,

e%)]
ai
fimean (z7) = [1 T xiv] Q2 =G,a  (3)
N—— .
::G’Ei :
an
——

for a suitable value of N known and Eﬁ%d and hence as a

consequence fieun () will be

1 oz - 2V Tao
fmean ($) = = Gma7 4
1oz, - a:%[ an
——
— Gy = o

This paper describes the unknown parameter vector o
in (3) as random variable with a known Gaussian prior
a~N (g, Xa), Where

fo =10 1 0 -+ 0] q4:=dag(r5%) (O
and with the vector of precisions 1, known. Notice that this
particular p captures the fact that, a priori, a sensor should
follow an expected ideal behavior, i.e., should be s.t. y; = x;.

]T

The static map fuoise (+) captures the heteroskedasticity of
the measurement system.

and the following three cases will be considered:

Case I froise(zs) =0
Case I fioise(2i) = vaf (6)
Case III: fnoise(mi) = Jufmean(xi)p

Case 1 describe homoskedastic sensors, Case II sensors
whose heteroskedasticity depends on the actual state of
the system and Case III sensors whose heteroskedasticity
depends on the expected measured state of the system.

o,, called the nominal standard deviation of the measure-
ment noise, is also a random variable with prior

0,2 =1, ~Gamma (a,,b,) (7
with known shape and scale parameters a, and b, (this
manuscript will also call 7, := o, 2 the nominal precision of
the measurement noise). p € Ry is an unknown parameter
to be estimated from the data, having a truncated Gaussian
prior and constitutes an other degree of freedom allowing for
further modeling flexibility.

The problem of sensor calibration consists of obtaining
estimates of the functions fiea (1) and fioise (+) starting
from a training set. Thus the authors aim to estimate the
parameters o, o, 2 and p when present.

III. OVERVIEW OF THE METHODOLOGY

The authors propose three different algorithms for the three
models of fyoise(-) considered. Each algorithm reconstructs
the posterior distribution of the unknown parameters with
MCMC techniques. In the Case I the target posterior den-
sity is p(a, 7, |x,y) while in Cases II and III this is
p(a,p, 7 |x,y). The Maximum A Posteriori (MAP) es-
timators of the unknown model parameters with MCMC
techniques is then computed. It is important to remark that
N is assumed known at this stage.

1) Case I, froise(xi) = 02

Since z is known and N fixed, GG is a fixed matrix and
our problem reduces to the classical problem of computing
the MAP estimate of o from a homoskedastic noisy measure-
ments of a linear transformation of the unknown parameters,



with the additional complexity that also the model noise
variance is unknown. This problem can be solved using a
Gibbs sampler, given that all the priors and likelihoods are
conjugate, resulting in Algorithm 1.

Algorithm 1 MCMC for the case fyoise(2;) = 00

1: initialization:
al®

70 ~ Gamma (a,,, b,)

= ua
2: for k=0,1,...kpee do
3: update 7, and « using the Gibbs sampler:
a® ) o p(a® ‘x ()

T£k+1) ~ p ,ry(k) ‘m’y’a(kJrl))
where
p(a(k)‘m Y, T )OCN(
AW = T,S’“)Ggy — 55 fher
BY = (161G, + 35"
p( (k) ’w Y, a<k+1>> x

-1
Gamma | a +% (1+10(k+1)Tc(k+1)) )
v 27 bl, 2

Ck+1) _ (y _ Gma(kﬂ))

A®) gk ))

-1

2) Case II, fupise(zi) = op2t:
in this case p also has to be estimated from the data. >,
becomes:

¥, = oldiag (:c?p, . x?&)
and the MAP estimator is

arg max
a€RN 02€R ,pER

p(a.oppla,y)

It is possible to reconstruct the posterior in sampled form
using an MCMC approach. To do so, it has to be noted that
P (p ‘:1: y, aFtD) - (Hl)? is not known, hence the authors
suggest to resort to Single Component Metropolis-Hasting
scheme, resulting in Algorithm 2.

Remark 1 The authors notice that the hyper—parameter [3
determining the proposal variance of the scheme requires
manual tuning. As suggested in the literature, it is beneficial
to tune (3 so that the acceptance ratio of the sampler lies
around 44% (see [14] and Table 1 in [15] for more details).

3) Case IIL frwise(xi) = Ullfmean (xz)p
in this case Y, can be rewritten as

Ey = O'gdlag (fmean(x1)2pa ce.

As Dbefore, the
is not
p (Ol ‘:c Y, 7T
computed resorting to a acceptance/rejection mechanism,
resulting in algorithm 3.

Notice also that the hyperparameters 3 and 3’ requires
manual tuning so that the acceptance ratio of the sampler
lies between 20% and 31% depending on the length of

) fmean(xM)Qp

(bet1) (k1)

posterior

p (P T,y o
known but in this case also the posterior
(kH) P ) is not known and have to be

Algorithm 2 MCMC for the case fnoise(2;) = oz
1: initialization:

a® = Ha
(0) _ 0
(O) ~ Gamma (a,,b,)

2. for k=0,1,. (up to convergence or up to a maximum
number of iteratlons kmaz) do
3: update 7, and « using the Gibbs samsler:

a®t) o~ p(a® ’m 7 (k)

rHD o (rl )‘m7y’a(k+1)’p(k))
generate new proposal:
pE+D A <p<k>75)
5: calculate the acceptance probability:
p(yTx pEHD) (k1) T(k+1>)

»

v =min |1,

(y‘fb Pk, ak+1) T(k+1))
where i1
o p(p( + ))
=
p (p™*))
6: accept the proposal if v > ¢ [0,1] and 0 > p > 10.
where

»(a® ’w,y@(k),pw)) < N (Bw)A(k),B(k))
AW = 70GT DMy — 5 g

BY = (rNGI DM G, + 27!
D) = diag fop(k), M2p(k)

p (Tu(k) ‘%y,a(k“),p”‘)) S

1
o+ M (1 N 1O<k+1>TD<k>O<k+1>) )
5 \b, 2

Ok+1) — (y _ Gwa(k-i-l))
p (M) N (0.1)

Gamma

parameter vector to estimate (see Table 1 in [15] for more
details).

IV. NUMERICAL RESULTS

The authors evaluate the different proposed procedures
using both simulated and field data.

A. Simulated Dataset

The simulated data were used to plot a typical posterior
for the case fooise(%i) = 0 finean (2;)”, were the actual model
order is N = 3. More precisely, the p—1,, space was plotted
in Figure 3 using dataset of both 50 and 900 samples, the a—
7, space in Figure 4 left plots, and the a—p space in Figure 4
on the right plots to show that for each pair of parameters
the posterior is in this case unimodal.

Evaluation of the parameter estimation procedures: Fig-
ures 5 and 6 show the estimated densities of the various



Algorithm 3 MCMC for the case froise(Zi) = 0y frmean(zi)”
1: initialization:

a® = .
p(O) — 0
70~ Gamma (a,,b,)

2: for k=0,1,.. (up to convergence or up to a maximum
number of iterations k,,,.) do
3: update 7, using the Gibbs sampler
D g ngEk) ‘w7y7a(k))
4: generate new proposals

oD N (a9, 5)

P+ o A (p<k>7ﬁ/)

5: calculate the acceptance probability:
P @Tx pE+D) (B +1) T£k+1))
v =min |1,
(y ‘w o) k), (k+1))
where (k41) (k41)
p_ P ) p (D)
P () p ()
6: accept the proposal if v > ¢ [0,1] and 0 > p > 10.
where

p a(k) NN(/"’Q7ZQ)
p (7P w,y,a(k),p(k)) x

Gamma | a +% i+ )
Y27\ b,
E(k) = dlag (fmean(xl)_

p (/") x N (1)

LowT E(k)c(k)>
>

2p%)

_9,(k)
5o -afmean(xM) 20 )

model parameters for the three different proposed models.
Figure 5 clearly shows that the posterior densities for a’s in
the heteroskedastic models are greatly peaked.

B. Real Dataset

Description of the experiments: The authors consider
datasets where the Lidar sensor is mounted on top of robot,
and the robot moves with constant speed (0.05 m/s) towards a
fixed wooden target starting at a distance of 4m and ending
at a distance of 0.5m. The experiment setup is shown in
Figure 2. The low cost triangulation Lidar used in the
experiments is form Neato', similar to the one described
in [8] but with infrared laser. The groundtruth distances x;s
were collected using a Vicon motion capture system.

Evaluation of the parameter estimation procedures: Fig-
ures 7 and 8 show the estimated densities of the various
model parameters for the three different proposed models
(assuming model order N = 3).

'A  robotic vacuum cleaner

neatorobotics.com/

manufacturer, https://www.
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Fig. 3. Density color map of the posterior p (p, 7 |,y ) for the case
Foise(Ti) = v fmean (z1)”. The black point represents the actual values
of the parameters and the solid line in magenta color shows the MCMC
convergence path in p—7,, space. The upper plot produced using 900 samples
while the lower produced using only 50 samples (plots produced using
artificial dataset).

N Oy quf qumean(xi)p
1 1397.59261 50.14214 3220.53529
2 3.15795 0.27043 0.02243
3 0.49000 0.00507 0.00185
4 0.48642 0.00404 0.00088
5 0.48714 0.00220 0.00092
6 0.48675 0.00229 0.01049
7 0.48754 0.00285 0.45820
TABLE II

THE PREDICTION MEAN SQUARED ERROR (MSE) SCORE FOR THE
DIFFERENT COMPETING MODELS.

performance evaluation: To evaluate the estimation pro-
cedure on real dataset the authors apply the prediction MSE
on another dataset (verification Dataset). The total empirical
MSE between the predicted output y; and the actual output
recorded in the Verlﬁcatlon dataset is defined as

Z fnmse xz H»v(s i H

where L is the number of measurements in the vitrification
dataset, (s) indicates the model index in the models set.
The authors select a set of proposed models consisting
of model orders from 1 till 7 for each one of the three
proposed models in Sections III-.1, III-.2 and III-.3. The
prediction MSE scores for the estimated models is presented
in Table II. The empirical MSE suggests the model structure
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Fig. 4. On the left, the density color map of the posterior p (cvj, 7 |2,y )
for the case fuoise(Ti) = Ou fmean (x;)”. While on the right the density
color map of the posterior p (a;,p|x,y) for the same case. The black
points represent the actual values of the parameters and the solid lines in
magenta color show the MCMC convergence path (plots produced using
artificial dataset).

with fuoise = 0y fmean(z:)” and model order N = 4 as the
one with minimum prediction MSE. The three models with
smallest scores are designated with bold fonts in the Table.

The computation time during the parameter estimation
process for the models in Table II is presented in Figure 9.
The time is calculated using Matlab with standard laptop
computer running Ubuntu, on Intel quad core 17-2640 CPU
@2.8GHz processor.

V. CONCLUSIONS AND FUTURE WORK

Motivated by the Lidar sensor calibration problem, this
paper proposed a Bayesian method for sensor calibration.
The method simultaneously estimates (i) an heteroskedastic
measurement noise and (ii) a polynomial bias, describing
a systematic distortion of the measured quantity. Such a
Bayesian formulation allows to exploit prior information on
the sensor model parameters and parameter estimation is
performed using MCMC techniques.

To take advantage of the identified models in a practical

/S fnois;(xi) =
8 1%
— 20 7 ozl
g O Frean(5)°
E‘/ O ! rJ mean K3
0.6 0.8 1.2 1.4
oo (normalized)
T T T
= 1,500 | | froise () =
- oy
8 1,000 |- B o
— 0,25
g 500 |- S \P
= ol -/,\ | qumean(wz)
0.98 0.99 1.01 1.02
oy (normalized)
S 40 | fnoiseo_(xi) =
e 1%
— 20 2 o,z
\éj \ — Oy Ty P
= ol l l, | | fmean( )
0.8 0.9 1 1.1 1.2
a9 (normalized)
Fig. 5. The estimated posterior densities for the parameters o, 1 and

. The densities in both heteroskedastic models are more peaked compared
with the homoskedastic model (plots produced using artificial dataset).

/S 30 |- fnoise(xiz) =
§ 20| ovTs
z 10 qumean(mi)p
=Y

0= I T

0.95 1 1.05 1.1

p (normalized)

1071 T
N 0 fnoise(xi) =
=)
8 5 oLx]
E qumean($i>p
& o 4 | |

0.5 1 1.5

7, (normalized)

Fig. 6. The estimated posterior density for the parameter p in the top plot
and for 7, in the bottom plot, the values are normalized with the actual
parameter values (plots produced using artificial dataset).

scenario, two further steps have to be developed.

First, there is the need of a mechanism for automatic selec-
tion of the most effective model among the three proposed
ones. Such a mechanism could be based on cross-validation,
i.e. performing the analysis of Section IV-B on a suitable
validation set and selecting the model with lower MSE.
Alternatively, model selection could be performed on the
basis of criteria accounting also for model complexity (e.g.
Bayesian Information Criterion (BIC)).

Then, the measurement-model parameters estimated on a
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Fig. 7. The estimated posterior densities for the parameters o, a1 and

ag (plots produced using real dataset).
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Fig. 8. The estimated posterior density for the parameter p in the top plot
and for 7, in the bottom plot (plots produced using real dataset).

training set should be used to reconstruct the underlying
state x associated to a new measurement y collected with
the sensor. This could be done in a Bayesian framework
reconstructing

p(zly, @ 7,p)
in sampled form using MCMC approaches.

These two further steps are under investigation and will be
object of future works.

The proposed calibration parameter estimation could be
compared with those obtained through different approaches,

’ | fnoise(wi):

. =0y
/.,_-/‘\___._‘ ° nyip

—_ qumean(xi)p

20

\'

computation time [sec]

model order [N]

Fig. 9. The MCMC computation time for the various proposed models in
Table II.

such as explicit modeling [16].
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