Some structure theorems for $R O(G)$-graded cohomology

Clover May UCLA

November 15, 2018

$R O(G)$-graded cohomology

G - finite group

- G-CW complex: attach orbit cells $G / K \times D^{n}$, for $K \leq G$
- Bredon cohomology $H_{G}^{*}(-)$
- coefficient system $H_{G}^{*}(G / K) \longrightarrow H_{G}^{*}(G / J)$

$$
V \text { - real representation of } G
$$

$S^{V}=\widehat{V}$ one-point compactification

$$
\Sigma^{\vee} X=S^{\vee} \wedge X
$$

- $R O(G)=$ Grothendieck group of finite-dimensional real orthogonal representations

$R O(G)$-graded cohomology

Theorem (Lewis, May, McClure, 1981)
The ordinary \mathbb{Z}-graded theory $H_{G}^{*}(-; M)$ with coefficients in a coefficient system M extends to an $R O(G)$-graded theory iff M extends to a Mackey functor.

$$
H_{G}^{*}(G / K) \longrightarrow H_{G}^{*}(G / J)
$$

- For $\alpha \in R O(G)$ any virtual representation and M a Mackey functor, get $H_{G}^{\alpha}(-; M)$
- Suspension isomorphism $\tilde{H}_{G}^{\alpha}(X ; M) \cong \tilde{H}_{G}^{\alpha+V}\left(\Sigma^{V} X ; M\right)$

$R O\left(C_{2}\right)$-graded cohomology

$$
G=C_{2}
$$

- Two orbits: $p t=C_{2} / C_{2}$ and $C_{2}=C_{2} / e$
- Representations $V=\mathbb{R}^{p, q}=\left(\mathbb{R}_{\text {triv }}\right)^{p-q} \oplus\left(\mathbb{R}_{\text {sgn }}\right)^{q}$
- Representation spheres $S^{V}=S^{p, q}$

$S^{1,0}$

- Coefficients in the constant Mackey functor: \mathbb{F}_{2}
- Write $H_{G}^{V}\left(X ; \mathbb{F}_{2}\right)=H^{p, q}\left(X ; \underline{\mathbb{F}_{2}}\right)=H^{p, q}(X)$

Cohomology of a point

$\mathbb{M}_{2}=H^{*, *}\left(p t ; \mathbb{F}_{2}\right)$

$\mathbb{M}_{2}=H^{*, *}\left(p t ; \underline{\mathbb{F}}_{2}\right)$

$$
\tilde{H}^{*, *}\left(S^{p, q}\right) \cong \Sigma^{p, q_{\mathbb{M}}}
$$

Examples

For any $X, H^{*, *}\left(X ; \mathbb{F}_{2}\right)$ is an \mathbb{M}_{2}-module via $X \rightarrow p t$

- $=\mathbb{F}_{2}$

$$
H^{*, *}\left(C_{2} ; \underline{\mathbb{F}_{2}}\right)
$$

$$
\mathbb{F}_{2}\left[\tau, \tau^{-1}\right]
$$

$$
\mathbb{F}_{2}\left[\tau, \tau^{-1}, \rho\right] /\left(\rho^{n+1}\right)
$$

$$
H^{*, *}\left(S_{a}^{n} ; \underline{\mathbb{F}_{2}}\right)
$$

$$
\mathbb{F}_{2}\left[\tau, \tau^{-1}, \rho\right] /\left(\rho^{n+1}\right)
$$

Some \mathbb{M}_{2}-modules

Torus examples

Cohomologies of C_{2}-actions on a torus with $\underline{\mathbb{F}}_{2}$-coefficients

Structure theorem

Theorem (M, 2018)
If X is a finite $C_{2}-C W$ complex then $H^{*, *}\left(X ; \mathbb{F}_{2}\right)$ is a direct sum of shifted copies of $\mathbb{M}_{2}=H^{*, *}\left(p t ; \underline{\mathbb{F}_{2}}\right)$ and $H^{*, *}\left(S_{a}^{n} ; \underline{\mathbb{F}_{2}}\right)$.

x

X

\checkmark

Structure theorem

Theorem (M, 2018)

Let X be a finite $C_{2}-C W$ complex. There is a decomposition of $H^{*, *}\left(X ; \underline{\mathbb{F}_{2}}\right)$ as a module over $\mathbb{M}_{2}=H^{*, *}\left(p t ; \underline{\mathbb{F}_{2}}\right)$

$$
H^{*, *}\left(X ; \mathbb{F}_{2}\right) \cong\left(\oplus_{i} \Sigma^{p_{i}, q_{i}} \mathbb{M}_{2}\right) \oplus\left(\oplus_{j} \Sigma^{r_{j}, 0} H^{*, *}\left(S_{a}^{n_{j}}\right)\right)
$$

where $\mathbb{R}^{p_{i}, q_{i}}$ and $\mathbb{R}^{r_{j}, 0}$ are elements of $R O\left(C_{2}\right)$ corresponding to actual representations.

Corollary

Let X be a finite $C_{2}-C W$ spectrum. There is a weak equivalence of genuine C_{2}-spectra

$$
X_{+} \wedge H \underline{\mathbb{F}_{2}} \simeq \bigvee_{i}\left(S^{p_{i}, q_{i}} \wedge H \underline{\mathbb{F}_{2}}\right) \vee \bigvee_{j}\left(S^{r_{j}, 0} \wedge S_{a}^{n_{j}}+\wedge \underline{\mathbb{F}_{2}}\right)
$$

Ingredients for the proof

$\rho^{-1} \mathbb{M}_{2}$

- If $x \in H^{*, *}(X)$ and $\theta x \neq 0$ then $\mathbb{M}_{2}\langle x\rangle \hookrightarrow H^{*, *}(X)$.
- \mathbb{M}_{2} is self-injective

$$
0 \rightarrow \oplus_{i} \sum^{p_{i}, q_{i}} \mathbb{M}_{2} \rightarrow H^{*, *}(X) \rightarrow Q \rightarrow 0
$$

- For a finite $\mathrm{C}_{2}-\mathrm{CW}$ complex

$$
\rho^{-1} H^{*, *}(X) \cong H_{\text {sing }}^{*}\left(X^{C_{2}} ; \mathbb{F}_{2}\right) \otimes \rho^{-1} \mathbb{M}_{2}
$$

- $\langle\tau, \theta, \rho\rangle=1$

Toda bracket

Use $\langle\tau, \theta, \rho\rangle=1$ to exclude many \mathbb{M}_{2}-modules.
Lemma
If $x \in H^{*, *}(X)$ and $\tau x=0$ then $x=\rho y$ for some $y \in H^{*, *}(X)$.
Follows from $x=x \cdot\langle\tau, \theta, \rho\rangle=\langle x, \tau, \theta\rangle \cdot \rho$

Use several similar results to show Q is a $\mathbb{F}_{2}\left[\tau, \tau^{-1}, \rho\right]$-module.

Finiteness required

Would want to extend to locally finite $C_{2}-\mathrm{CW}$ complexes:

$$
\begin{gathered}
H^{*, *}\left(S_{a}^{n}\right) \cong \mathbb{F}_{2}\left[\tau, \tau^{-1}, \rho\right] /\left(\rho^{n+1}\right) \\
H^{*, *}\left(S_{a}^{\infty}\right) \cong \mathbb{F}_{2}\left[\tau, \tau^{-1}, \rho\right]
\end{gathered}
$$

Counterexample

$$
S^{\infty, \infty}=\operatorname{colim}\left(S^{0,0} \xrightarrow{\rho} S^{1,1} \xrightarrow{\rho} S^{2,2} \xrightarrow{\rho} \cdots \rightarrow S^{n, n} \rightarrow \cdots\right)
$$

Application of theorem to $\mathbb{R} P_{t w}^{2}$

- Consider $\mathbb{R} P_{t w}^{2}$
- Cofiber sequence $S^{1,0} \hookrightarrow \mathbb{R} P_{t w}^{2} \rightarrow S^{2,2}$
- Long exact sequence in $\tilde{H}^{*, *}(-)$

- Extension problem

$$
0 \rightarrow \operatorname{cok} d \rightarrow \tilde{H}^{*, *}\left(\mathbb{R} P_{t w}^{2}\right) \rightarrow \operatorname{ker} d \rightarrow 0
$$

Freeness Theorems

- G-CW complex: attach orbit cells $G / K \times D^{n}$
- $\operatorname{Rep}(G)$-complex: attach representation cells $D(V)$

$$
\text { e.g. Grassmannian } G r_{k}\left(\mathbb{R}^{p, q}\right)
$$

Theorem (Kronholm, 2010)
If X is a finite $\operatorname{Rep}\left(C_{2}\right)$-complex, $H^{*, *}(X)$ is a free \mathbb{M}_{2}-module.
Theorem (Ferland, 1999)
If X is a finite $\operatorname{Rep}\left(C_{p}\right)$-complex for p odd and X has only even dimensional cells, then $H_{G}^{*}(X)$ is a free $H_{G}^{*}(p t)$-module (with coefficients in \mathcal{A} or $\underline{\mathbb{Z}}$).

$R O\left(C_{3}\right)$-graded cohomology

$$
G=C_{3}
$$

- Two orbits: $p t=C_{3} / C_{3}$ and $C_{3}=C_{3} / e$
- Representations $V=\mathbb{R}^{p, q}=\left(\mathbb{R}_{\text {triv }}\right)^{p-q} \oplus\left(\mathbb{R}_{\text {rot }}^{2}\right)^{q / 2}$
- Representation spheres $S^{V}=S^{p, q}$

- Coefficients in the constant Mackey functor: \mathbb{F}_{3}
- Write $H_{G}^{V}\left(X ; \mathbb{F}_{3}\right)=H^{p, q}\left(X ; \mathbb{F}_{3}\right)$ for $q=$ even

Cohomology of a point

Examples

For any $X, H^{*, *}\left(X ; \mathbb{F}_{3}\right)$ is an \mathbb{M}_{3}-module via $X \rightarrow p t$

$$
H^{*, *}\left(C_{3} ; \underline{\mathbb{F}_{3}}\right)
$$

$H^{*, *}\left(S_{\text {free }}^{1} ; \underline{\mathbb{F}_{3}}\right)$

$H^{*, *}\left(S_{\text {free }}^{3} ; \underline{\mathbb{F}_{3}}\right)$

Egg-beater

Cofiber sequence $C_{3+} \rightarrow S^{0,0} \rightarrow E B$

$\widetilde{H}^{*, *}\left(E B ; \underline{\mathbb{F}_{3}}\right)$

$\widetilde{H}^{*, *}\left(E B ; \underline{\mathbb{F}_{3}}\right)$

For $G=C_{2}$ this cofiber sequence is $C_{2+} \rightarrow S^{0,0} \rightarrow S^{1,1}$

Structure theorem

"Theorem" (M , in progress)
If X is a finite $C_{3}-C W$ complex then $H^{*, *}\left(X ; \mathbb{F}_{3}\right)$ is a direct sum of shifted copies of:

$$
\mathbb{M}_{3}=H^{*, *}(p t), \quad H^{*, *}\left(C_{3}\right), \quad H^{*, *}\left(S_{\text {free }}^{2 n+1}\right), \quad \text { and } \widetilde{H}^{*, *}(E B) .
$$

C_{2} structure theorem:

- θ detects \mathbb{M}_{2}
- \mathbb{M}_{2} is self-injective
- ρ-localization: for finite C_{2}-CW complexes

$$
\rho^{-1} H^{*, *}\left(X ; \underline{\mathbb{F}_{2}}\right) \cong H_{\text {sing }}^{*}\left(X^{C_{2}} ; \mathbb{F}_{2}\right) \otimes \rho^{-1} \mathbb{M}_{2}
$$

- $\langle\tau, \theta, \rho\rangle=1$

\mathbb{M}_{2}
C_{3} structure theorem:
- w detects \mathbb{M}_{3}
- \mathbb{M}_{3} is self-injective
- z-localization: for finite C_{3}-CW complexes $z^{-1} H^{*, *}\left(X ; \underline{\mathbb{F}_{3}}\right) \cong H_{\text {sing }}^{*}\left(X^{C_{3}} ; \mathbb{F}_{3}\right) \otimes z^{-1} \mathbb{M}_{3}$
- $\left\langle x, \frac{w}{y}, z\right\rangle=1$

An analogue of $\mathbb{R} P_{t w}^{2}$

- Consider Y
- Cofiber sequence $S^{1,0} \hookrightarrow Y \rightarrow S^{2,2}$
- Long exact sequence in $\tilde{H}^{*, *}(-)$
- Extension problem $0 \rightarrow \operatorname{cok} d \rightarrow \tilde{H}^{*, *}(Y) \rightarrow \operatorname{ker} d \rightarrow 0$

Thank you!

