1. Let S_1 be the surface $x^2 + y^2 + z^2 = 4$ for $z \ge 0$ and let S_2 be the surface $z = 4 - x^2 - y^2$ for $z \ge 0$, with both surfaces oriented upward. Suppose **F** is a vector field on \mathbb{R}^3 whose components have continuous partial derivatives. Explain why

$$\iint_{\mathcal{S}_1} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \iint_{\mathcal{S}_2} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}.$$

- 2. Let **F** be the vector field $\mathbf{F}(x, y, z) = \langle x, y, xyz \rangle$ and let \mathcal{S} be the part of the plane 2x + y + z = 2 that lies in the first octant oriented upward.
 - (a) Explicitly compute $\iint_{\mathcal{S}} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$.

(b) Verify that Stokes' theorem holds by explicitly computing $\int_{\partial S} \mathbf{F} \cdot d\mathbf{r}$.

3. Let \mathcal{S} be a surface in \mathbb{R}^3 that is closed and bounded (e.g. a sphere) and let \mathbf{F} be a vector field defined on all of \mathbb{R}^3 with continuous partial derivatives. Find $\iint_{\mathcal{S}} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$.

4. In this problem you will show that Stokes' Theorem implies Green's Theorem. Let $\mathbf{F}(x, y) = \langle F_1(x, y), F_2(x, y) \rangle$ be a vector field in the plane with continuous partial derivatives and define \mathbf{G} , a vector field on \mathbb{R}^3 by

$$\mathbf{G}(x, y, z) = \langle F_1(x, y), F_2(x, y), 0 \rangle.$$

Suppose S is a flat surface in the *xy*-plane with upward orientation and C is the boundary of S with positive orientation.

(a) Show that

$$\int_{\mathcal{C}} F_1(x,y) \, dx + F_2(x,y) \, dy = \int_{\mathcal{C}} \mathbf{G} \cdot d\mathbf{r}.$$

(b) Show using Stokes' Theorem that

$$\int_{\mathcal{C}} F_1(x, y) \, dx + F_2(x, y) \, dy = \iint_{\mathcal{S}} \operatorname{curl} \mathbf{G} \cdot d\mathbf{S}$$

(c) Show the equation in part (b) is exactly Green's Theorem by explicitly writing the right-hand side.

5. Let \mathcal{W} be the solid bounded by the cylinder $x^2 + y^2 = 1$ and the planes z = 0 and z = 1. Let $\mathcal{S} = \partial \mathcal{W}$ be the surface formed by the boundary (i.e. the cylinder together with two planes). Let \mathbf{F} be the vector field $\mathbf{F}(x, y, z) = \langle xy, yz, xz \rangle$.

(a) Compute
$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}$$
.

(b) Compute $\iiint_{\mathcal{W}} \operatorname{div} \mathbf{F} \, dV$.

(c) Compare your answers in parts (a) and (b). What do you notice?