1. Let \mathcal{S}_{1} be the surface $x^{2}+y^{2}+z^{2}=4$ for $z \geq 0$ and let \mathcal{S}_{2} be the surface $z=4-x^{2}-y^{2}$ for $z \geq 0$, with both surfaces oriented upward. Suppose \mathbf{F} is a vector field on \mathbb{R}^{3} whose components have continuous partial derivatives. Explain why

$$
\iint_{\mathcal{S}_{1}} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\iint_{\mathcal{S}_{2}} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S} .
$$

2. Let \mathbf{F} be the vector field $\mathbf{F}(x, y, z)=\langle x, y, x y z\rangle$ and let \mathcal{S} be the part of the plane $2 x+y+z=2$ that lies in the first octant oriented upward.
(a) Explicitly compute $\iint_{\mathcal{S}} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$.
(b) Verify that Stokes' theorem holds by explicitly computing $\int_{\partial \mathcal{S}} \mathbf{F} \cdot d \mathbf{r}$.
3. Let \mathcal{S} be a surface in \mathbb{R}^{3} that is closed and bounded (e.g. a sphere) and let \mathbf{F} be a vector field defined on all of \mathbb{R}^{3} with continuous partial derivatives. Find $\iint_{\mathcal{S}} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$.
4. In this problem you will show that Stokes' Theorem implies Green's Theorem. Let $\mathbf{F}(x, y)=\left\langle F_{1}(x, y), F_{2}(x, y)\right\rangle$ be a vector field in the plane with continuous partial derivatives and define \mathbf{G}, a vector field on \mathbb{R}^{3} by

$$
\mathbf{G}(x, y, z)=\left\langle F_{1}(x, y), F_{2}(x, y), 0\right\rangle .
$$

Suppose \mathcal{S} is a flat surface in the $x y$-plane with upward orientation and \mathcal{C} is the boundary of \mathcal{S} with positive orientation.
(a) Show that

$$
\int_{\mathcal{C}} F_{1}(x, y) d x+F_{2}(x, y) d y=\int_{\mathcal{C}} \mathbf{G} \cdot d \mathbf{r} .
$$

(b) Show using Stokes' Theorem that

$$
\int_{\mathcal{C}} F_{1}(x, y) d x+F_{2}(x, y) d y=\iint_{\mathcal{S}} \operatorname{curl} \mathbf{G} \cdot d \mathbf{S}
$$

(c) Show the equation in part (b) is exactly Green's Theorem by explicitly writing the right-hand side.
5. Let \mathcal{W} be the solid bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $z=0$ and $z=1$. Let $\mathcal{S}=\partial \mathcal{W}$ be the surface formed by the boundary (i.e. the cylinder together with two planes). Let \mathbf{F} be the vector field $\mathbf{F}(x, y, z)=\langle x y, y z, x z\rangle$.
(a) Compute $\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}$.
(b) Compute $\iiint_{\mathcal{W}} \operatorname{div} \mathbf{F} d V$.
(c) Compare your answers in parts (a) and (b). What do you notice?

