1. Evaluate the line integral $\oint_{\mathcal{C}} \sin \left(x^{2}\right) d x+x d y$ where \mathcal{C} is the triangle with vertices $(0,0)$, $(3,0)$, and $(3,2)$ oriented clockwise.
2. A particle starts at the point $(-2,0)$, moves along the x-axis to $(2,0)$, and then along the semicircle $y=\sqrt{4-x^{2}}$ to the starting point. Find the work done on the particle by the force field $\mathbf{F}(x, y)=\left\langle x, x^{3}+3 x y^{2}\right\rangle$.
3. Let $\mathbf{F}(x, y)=\left\langle e^{x}+x^{2} y, e^{y}-x y^{2}\right\rangle$ and \mathcal{C} be the circle $x^{2}+y^{2}=25$ oriented clockwise. Evaluate $\oint_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$.
4. Evaluate $\int_{\mathcal{C}}(\sin x+7 y) d x+(6 x+y) d y$ for the curve \mathcal{C} given by line segments from $(0,0)$ to $(1,1)$ to $(1,2)$ to $(0,3)$.
5. Use Green's Theorem to compute the area inside the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$.
6. Find a parametrization of the curve $x^{2 / 3}+y^{2 / 3}=9^{2 / 3}$ and use it to compute the area of the interior. Hint: Let $x(t)=9 \cos ^{3} t$.
7. Let \mathbf{F} be the vector field

$$
\mathbf{F}(x, y)=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle .
$$

Prove that $\oint_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=2 \pi$ for any simple closed path \mathcal{C} with counterclockwise orientation that encloses the origin.

Hint: Consider a small circle centered at the origin, small enough so that it lies completely inside the region bounded by \mathcal{C}. Let \mathcal{D} be the region bounded by the two curves and apply the general form of Green's Theorem.
8. Let \mathcal{D} be a region bounded by a simple closed curve \mathcal{C} in the $x y$-plane. Use Green's Theorem to prove the coordinates of the centroid (\bar{x}, \bar{y}) of \mathcal{D} are given by

$$
\bar{x}=\frac{1}{2 A} \oint_{\mathcal{C}} x^{2} d y \quad \bar{y}=-\frac{1}{2 A} \oint_{\mathcal{C}} y^{2} d x
$$

where A is the area of \mathcal{D}.

