1. Evaluate the line integral $\oint_{\mathcal{C}} \sin(x^2) dx + x dy$ where \mathcal{C} is the triangle with vertices (0,0), (3,0), and (3,2) oriented clockwise.

2. A particle starts at the point (-2, 0), moves along the x-axis to (2, 0), and then along the semicircle $y = \sqrt{4 - x^2}$ to the starting point. Find the work done on the particle by the force field $\mathbf{F}(x, y) = \langle x, x^3 + 3xy^2 \rangle$.

3. Let $\mathbf{F}(x, y) = \langle e^x + x^2 y, e^y - xy^2 \rangle$ and \mathcal{C} be the circle $x^2 + y^2 = 25$ oriented clockwise. Evaluate $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$. 4. Evaluate $\int_{\mathcal{C}} (\sin x + 7y) dx + (6x + y) dy$ for the curve \mathcal{C} given by line segments from (0, 0) to (1, 1) to (1, 2) to (0, 3).

5. Use Green's Theorem to compute the area inside the ellipse $\frac{x^2}{9} + \frac{y^2}{25} = 1$.

6. Find a parametrization of the curve $x^{2/3} + y^{2/3} = 9^{2/3}$ and use it to compute the area of the interior. *Hint:* Let $x(t) = 9\cos^3 t$.

7. Let \mathbf{F} be the vector field

$$\mathbf{F}(x,y) = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle.$$

Prove that $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = 2\pi$ for any simple closed path \mathcal{C} with counterclockwise orientation that encloses the origin.

Hint: Consider a small circle centered at the origin, small enough so that it lies completely inside the region bounded by C. Let D be the region bounded by the two curves and apply the general form of Green's Theorem.

8. Let \mathcal{D} be a region bounded by a simple closed curve \mathcal{C} in the *xy*-plane. Use Green's Theorem to prove the coordinates of the centroid (\bar{x}, \bar{y}) of \mathcal{D} are given by

$$\bar{x} = \frac{1}{2A} \oint_{\mathcal{C}} x^2 \, dy \qquad \bar{y} = -\frac{1}{2A} \oint_{\mathcal{C}} y^2 \, dx$$

where A is the area of \mathcal{D} .