1. Let $\mathbf{F}(x, y)=\left(y^{2}+1\right) \mathbf{i}+(2 x y-2) \mathbf{j}$. Compute $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$ explicitly by parametrizing \mathcal{C} where
(a) \mathcal{C} is the line segment from $(0,0)$ to $(1,1)$.
(b) \mathcal{C} is the path from $(0,0)$ to $(1,1)$ that first moves along a straight line in the positive y-direction and then along a straight line in the positive x-direction.
(c) \mathcal{C} is the path from $(0,0)$ to $(1,1)$ along the parabola $y=x^{2}$.
(d) \mathcal{C} is the arc of the circle centered at $(1,0)$ with radius 1 from $(0,0)$ to $(1,1)$.
(e) Do your answers above agree with the fundamental theorem of line integrals? Why or why not?
2. Let $f(x, y)=\sin x+x^{2} y$ and $\mathbf{F}=\nabla f$. Let \mathcal{C} be the curve in \mathbb{R}^{2} parameterized by $\mathbf{r}(t)=\left\langle t, t^{2}\right\rangle$ for $0 \leq t \leq \pi$.
(a) Compute the line integral $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$ explicitly using the parametrization for \mathcal{C}.
(b) Use the fundamental theorem for line integrals to compute $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$.
(c) Do your answers to parts (a) and (b) agree? Why or why not?
(d) Now suppose \mathcal{C} is instead the curve parameterized by $\mathbf{r}(t)=\left\langle\ln t, \sin (\ln t) \sqrt{t^{3}+1}\right\rangle$ for $1 \leq t \leq e^{2 \pi}$. Find $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$.
3. Find the work done by the force field $\mathbf{F}(x, y)=e^{-y} \mathbf{i}-x e^{-y} \mathbf{j}$ in moving a particle from $(0,1)$ to $(2,0)$.
4. Given the vector field $\mathbf{F}(x, y, z)=\left\langle y^{2} \cos z, 2 x y \cos z,-x y^{2} \sin z\right\rangle$ and the curve \mathcal{C} parameterized by $\mathbf{r}(t)=\left\langle t^{2}, \sin t, t\right\rangle$ for $0 \leq t \leq 2 \pi$, evaluate $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$.
5. Consider the vector field

$$
\mathbf{F}(x, y)=\frac{-y}{x^{2}+y^{2}} \mathbf{i}+\frac{x}{x^{2}+y^{2}} \mathbf{j} .
$$

(a) Parametrizing \mathcal{C}, where \mathcal{C} is the unit circle oriented counterclockwise, explicitly calculate $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$.
(b) Show that $\frac{\partial F_{1}}{\partial y}=\frac{\partial F_{2}}{\partial x}$.
(c) Do your answers to parts (a) and (b) contradict each other? Why or why not? Hint: If \mathcal{D} is the region in \mathbb{R}^{2} where \mathbf{F} is defined, is \mathcal{D} simply connected?
6. Consider the vector field

$$
\mathbf{F}(x, y, z)=\left\langle\frac{1}{x}+e^{x y} y z, \frac{1}{y}+e^{x y} x z, \frac{1}{z}+e^{x y}+1\right\rangle .
$$

Show that $\oint_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=0$ for any closed curve \mathcal{C} contained entirely in the first octant.

