- 1. Match each vector field ${\bf F}$ with its plot below.
 - (a) $\mathbf{F}(x,y) = \langle x, -y \rangle$
 - (b) $\mathbf{F}(x,y) = \langle y, y x \rangle$
 - (c) $\mathbf{F}(x, y) = \langle \cos x, \cos y \rangle$
 - (d) $\mathbf{F}(x,y) = \langle x, x-2 \rangle$

(A)	(B)
$\begin{array}{c} f & f & f & f & f & f & f & f & f & f $	(D)

2. Which of the above vector fields are conservative? Find a potential function for each conservative vector field.

A flow line for a vector field \mathbf{F} is a parameterized path $\mathbf{r}(t)$ such that for every t, $\mathbf{r}'(t) = \mathbf{F}(\mathbf{r}(t))$. That is, the velocity vectors for a particle traveling along the path coincide with the of the vector field at all points along the path.

3. Consider the vector fields

$$\mathbf{F}(x,y) = \frac{x}{\sqrt{x^2 + y^2}} \mathbf{i} + \frac{y}{\sqrt{x^2 + y^2}} \mathbf{j} \text{ and } \mathbf{G}(x,y) = \frac{-y}{\sqrt{x^2 + y^2}} \mathbf{i} + \frac{x}{\sqrt{x^2 + y^2}} \mathbf{j}$$

(a) Show that $\mathbf{F}(x, y)$ and $\mathbf{G}(x, y)$ have unit length for all (x, y) where they are defined.

- (b) Show that $\mathbf{F}(x, y)$ is perpendicular to $\mathbf{G}(x, y)$ for all (x, y) where they are defined.
- (c) Sketch the vector fields $\mathbf{F}(x, y)$ and $\mathbf{G}(x, y)$.
- (d) Determine whether $\mathbf{r}(t) = \langle \cos t, \sin t \rangle$ is a flow line for **F**.
- (e) Determine whether $\mathbf{r}(t) = \langle \cos t, \sin t \rangle$ is a flow line for **G**.
- (f) Determine whether $\mathbf{r}(t) = \langle 2\cos t, 2\sin t \rangle$ is a flow line for **G**.

4. Let $\mathbf{F}(x, y, z)$ be a conservative vector field so that $\mathbf{F} = \nabla f$ for some f(x, y, z). Assume that all partial derivatives of f(x, y, z) exist and are continuous. Show that

 $\operatorname{curl}(\mathbf{F}) = \operatorname{curl}(\nabla f) = \mathbf{0}.$

5. Let $\mathbf{F}(x, y, z)$ be a vector field. Assume that all partial derivatives of \mathbf{F} exist and are continuous. Show that div (curl \mathbf{F}) = 0.

6. Determine whether or not the vector field $\mathbf{F}(x, y, z) = \langle y^2, 2xy + e^{3z}, 3ye^{3z} \rangle$ is conservative. If not, explain why not. If \mathbf{F} is conservative, find a potential function for \mathbf{F} .