1. Match each vector field \mathbf{F} with its plot below.
(a) $\mathbf{F}(x, y)=\langle x,-y\rangle$
(b) $\mathbf{F}(x, y)=\langle y, y-x\rangle$
(c) $\mathbf{F}(x, y)=\langle\cos x, \cos y\rangle$
(d) $\mathbf{F}(x, y)=\langle x, x-2\rangle$

2. Which of the above vector fields are conservative? Find a potential function for each conservative vector field.

A flow line for a vector field \mathbf{F} is a parameterized path $\mathbf{r}(t)$ such that for every t, $\mathbf{r}^{\prime}(t)=\mathbf{F}(\mathbf{r}(t))$. That is, the velocity vectors for a particle traveling along the path coincide with the of the vector field at all points along the path.
3. Consider the vector fields

$$
\mathbf{F}(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}} \mathbf{i}+\frac{y}{\sqrt{x^{2}+y^{2}}} \mathbf{j} \text { and } \mathbf{G}(x, y)=\frac{-y}{\sqrt{x^{2}+y^{2}}} \mathbf{i}+\frac{x}{\sqrt{x^{2}+y^{2}}} \mathbf{j}
$$

(a) Show that $\mathbf{F}(x, y)$ and $\mathbf{G}(x, y)$ have unit length for all (x, y) where they are defined.
(b) Show that $\mathbf{F}(x, y)$ is perpendicular to $\mathbf{G}(x, y)$ for all (x, y) where they are defined.
(c) Sketch the vector fields $\mathbf{F}(x, y)$ and $\mathbf{G}(x, y)$.
(d) Determine whether $\mathbf{r}(t)=\langle\cos t, \sin t\rangle$ is a flow line for \mathbf{F}.
(e) Determine whether $\mathbf{r}(t)=\langle\cos t, \sin t\rangle$ is a flow line for \mathbf{G}.
(f) Determine whether $\mathbf{r}(t)=\langle 2 \cos t, 2 \sin t\rangle$ is a flow line for \mathbf{G}.
4. Let $\mathbf{F}(x, y, z)$ be a conservative vector field so that $\mathbf{F}=\nabla f$ for some $f(x, y, z)$. Assume that all partial derivatives of $f(x, y, z)$ exist and are continuous. Show that

$$
\operatorname{curl}(\mathbf{F})=\operatorname{curl}(\nabla f)=\mathbf{0}
$$

5. Let $\mathbf{F}(x, y, z)$ be a vector field. Assume that all partial derivatives of \mathbf{F} exist and are continuous. Show that $\operatorname{div}(\operatorname{curl} \mathbf{F})=0$.
6. Determine whether or not the vector field $\mathbf{F}(x, y, z)=\left\langle y^{2}, 2 x y+e^{3 z}, 3 y e^{3 z}\right\rangle$ is conservative. If not, explain why not. If \mathbf{F} is conservative, find a potential function for \mathbf{F}.
