1. Recall that an affine transformation of the plane is of the form

$$
G(u, v)=(a u+b v+c, d u+e v+f) .
$$

(a) Find an affine change of coordinates that takes the unit square with vertices

$$
P=(0,0), \quad Q=(1,0), \quad R=(0,1), \quad S=(1,1)
$$

in the $u v$-plane to the rectangle with vertices

$$
\bar{P}=(-1,5), \quad \bar{Q}=(3,5), \quad \bar{R}=(-1,8), \quad \bar{S}=(3,8)
$$

in the $x y$-plane.
(b) Find the Jacobian for the change of coordinates in part (a).
2. Verify that

$$
f(x, y)= \begin{cases}4 x y & \text { if } 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

is a joint density function. Suppose X and Y are random variables with joint density function f find $P\left(X \geq \frac{1}{2}\right)$.
3. A spherical shell centered at the origin has an inner radius of 5 cm and an outer radius of 6 cm . The density δ of the material increases linearly with the distance from the center. At the inner surface $\delta=12 \mathrm{~g} / \mathrm{cm}^{3}$ and at the outer surface $\delta=14 \mathrm{~g} / \mathrm{cm}^{3}$.
(a) Using spherical coordinates write the density δ as a function of ρ.
(b) Find the mass of the shell.
4. Find the Jacobian for $G: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ where $G(\rho, \theta, \phi)=(x, y, z)$ is the transformation defined by spherical coordinates.
5. Let E be the ellipsoid defined by the equation

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}=1 .
$$

Use the change of variables $x=a u, y=b v$, and $z=c w$ and a triple integral to find a formula for the volume of E in terms of a, b, and c.

