1. Let $\mathcal{D}$ be the region in the plane bounded by $y=x^{2}$ and $y=1$. Write the double integral $\iint_{\mathcal{D}} f(x, y) d A$ as an iterated integral in both possible orders.
2. Let $\mathcal{D}$ be the trapezoid in the plane with vertices $(0,0),(2,0),(1,1)$, and $(0,1)$. Write the double integral $\iint_{\mathcal{D}} f(x, y) d A$ as an iterated integral in both possible orders. Which one is easier?
3. Evaluate the double integral $\iint_{\mathcal{D}} \sqrt{y^{3}+1} d A$ where $\mathcal{D}$ is the region in the first quadrant bounded by $x=0, y=1$, and $y=\sqrt{x}$. Try the integration in both possible orders. Which one is easier?
4. Evaluate the iterated integral

$$
\int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{0} 2 x \cos \left(y-\frac{y^{3}}{3}\right) d y d x
$$

5. Determine the projection onto the $x y$-plane of the region $\mathcal{W} \subseteq \mathbb{R}^{3}$ bounded by the planes $x=0, y=0, z=0$, and $x+y+z=1$.
6. Determine the projection onto the $x y$-plane of the region $\mathcal{W} \subseteq \mathbb{R}^{3}$ bounded by the surfaces $z=\sqrt{x^{2}+y^{2}}$ and $x^{2}+y^{2}+z^{2}=1$.
7. In this problem you will integrate the function $f(x, y, z)=y$ over the region $\mathcal{W} \subseteq \mathbb{R}^{3}$ bounded by the surfaces $z=8-x^{2}-y^{2}$ and $z=x^{2}+y^{2}$.
(a) Sketch the region $\mathcal{W}$.
(b) Determine the projection of $\mathcal{W}$ onto the $x y$-plane.
(c) Notice that $\mathcal{W}$ is $z$-simple. This means we can write

$$
\iiint_{\mathcal{W}} y d V=\iint_{\mathcal{D}} \int_{z_{1}}^{z_{2}} y d z d A
$$

where $\mathcal{D}$ is the projection found in part (b). Use this to write the triple integral as an iterated triple integral of the form $d z d y d x$.
(d) Finally, compute the triple integral.
(e) What goes wrong if you try to compute the iterated integral instead as $d z d x d y$ ?

