1. Let \mathcal{D} be the region in the plane bounded by $y = x^2$ and y = 1. Write the double integral $\iint_{\mathcal{D}} f(x, y) dA$ as an iterated integral in both possible orders.

2. Let \mathcal{D} be the trapezoid in the plane with vertices (0,0), (2,0), (1,1), and (0,1). Write the double integral $\iint_{\mathcal{D}} f(x,y) dA$ as an iterated integral in both possible orders. Which one is easier?

3. Evaluate the double integral $\iint_{\mathcal{D}} \sqrt{y^3 + 1} \, dA$ where \mathcal{D} is the region in the first quadrant bounded by x = 0, y = 1, and $y = \sqrt{x}$. Try the integration in both possible orders. Which one is easier?

4. Evaluate the iterated integral

$$\int_0^1 \int_{-\sqrt{1-x^2}}^0 2x \cos\left(y - \frac{y^3}{3}\right) \, dy \, dx.$$

5. Determine the projection onto the xy-plane of the region $\mathcal{W} \subseteq \mathbb{R}^3$ bounded by the planes x = 0, y = 0, z = 0, and x + y + z = 1.

6. Determine the projection onto the xy-plane of the region $\mathcal{W} \subseteq \mathbb{R}^3$ bounded by the surfaces $z = \sqrt{x^2 + y^2}$ and $x^2 + y^2 + z^2 = 1$.

- 7. In this problem you will integrate the function f(x, y, z) = y over the region $\mathcal{W} \subseteq \mathbb{R}^3$ bounded by the surfaces $z = 8 x^2 y^2$ and $z = x^2 + y^2$.
 - (a) Sketch the region \mathcal{W} .

(b) Determine the projection of \mathcal{W} onto the *xy*-plane.

(c) Notice that \mathcal{W} is z-simple. This means we can write

$$\iiint_{\mathcal{W}} y \, dV = \iint_{\mathcal{D}} \int_{z_1}^{z_2} y \, dz \, dA$$

where \mathcal{D} is the projection found in part (b). Use this to write the triple integral as an iterated triple integral of the form $dz \, dy \, dx$.

(d) Finally, compute the triple integral.

(e) What goes wrong if you try to compute the iterated integral instead as $dz \, dx \, dy$?