1. Let \mathcal{W} be the solid region bounded by the $x y$-plane and $z=4-x^{2}-y^{2}$. Let \mathcal{S} be the boundary surface of \mathcal{W} with positive orientation and let

$$
\mathbf{F}(x, y, z)=\left\langle x z \sin (y z)+x^{3}, \cos (y z), 3 y^{2} z-e^{x^{2}+y^{2}}\right\rangle
$$

Find $\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}$.
2. Consider the surface \mathcal{S}_{1} given by $z=4-x^{2}-y^{2}$ for $z \geq 0$ and let

$$
\mathbf{F}(x, y, z)=\left\langle x z \sin (y z)+x^{3}, \cos (y z), 3 y^{2} z-e^{x^{2}+y^{2}}\right\rangle .
$$

Compute $\iint_{\mathcal{S}_{1}} \mathbf{F} \cdot d \mathbf{S}$. (Hint: Use your result from the previous problem.)
3. Let \mathcal{W} be a simple solid with piecewise smooth boundary \mathcal{S}.
(a) What geometric quantity is computed by

$$
\frac{1}{3} \iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}
$$

where $\mathbf{F}(x, y, z)=\langle x, y, z\rangle$?
(b) Are there other vector fields $\mathbf{F}(x, y, z)$ that compute the same quantity as described in part (a)? If not, explain why not. If so, give some examples.
(c) Let \mathcal{S} be the sphere centered at the origin with radius R and outward pointing normal and let

$$
\mathbf{F}(x, y, z)=\left\langle x-3 y^{2} z, e^{x z}-y, 2 z-\cos (x y)\right\rangle .
$$

Use the Divergence Theorem to find the flux of \mathbf{F} across \mathcal{S}.
4. Let \mathcal{W} be part of the cone $x^{2}+y^{2}=(2-z)^{2}$ for $0 \leq z \leq 1$. Use the Divergence Theorem to find the volume of \mathcal{W}. (Hint: You have a choice of \mathbf{F}. Since the boundary of \mathcal{W} would normally have three pieces, make a choice of \mathbf{F} so that $\mathbf{F} \cdot \mathbf{n}=0$ on two of those pieces.)

