1. Let \mathcal{W} be the solid region bounded by the *xy*-plane and $z = 4 - x^2 - y^2$. Let \mathcal{S} be the boundary surface of \mathcal{W} with positive orientation and let

$$\mathbf{F}(x,y,z) = \left\langle xz\sin(yz) + x^3, \cos(yz), 3y^2z - e^{x^2 + y^2} \right\rangle.$$

Find $\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}$.

2. Consider the surface S_1 given by $z = 4 - x^2 - y^2$ for $z \ge 0$ and let $\mathbf{F}(x, y, z) = \left\langle xz \sin(yz) + x^3, \cos(yz), 3y^2z - e^{x^2 + y^2} \right\rangle.$

Compute $\iint_{\mathcal{S}_1} \mathbf{F} \cdot d\mathbf{S}$. (*Hint:* Use your result from the previous problem.)

- 3. Let \mathcal{W} be a simple solid with piecewise smooth boundary \mathcal{S} .
 - (a) What geometric quantity is computed by

$$\frac{1}{3} \iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}$$

where $\mathbf{F}(x, y, z) = \langle x, y, z \rangle$?

(b) Are there other vector fields $\mathbf{F}(x, y, z)$ that compute the same quantity as described in part (a)? If not, explain why not. If so, give some examples.

(c) Let \mathcal{S} be the sphere centered at the origin with radius R and outward pointing normal and let

 $\mathbf{F}(x, y, z) = \left\langle x - 3y^2 z, e^{xz} - y, 2z - \cos(xy) \right\rangle.$ Use the Divergence Theorem to find the flux of **F** across S. 4. Let \mathcal{W} be part of the cone $x^2 + y^2 = (2 - z)^2$ for $0 \le z \le 1$. Use the Divergence Theorem to find the volume of \mathcal{W} . (*Hint:* You have a choice of \mathbf{F} . Since the boundary of \mathcal{W} would normally have three pieces, make a choice of \mathbf{F} so that $\mathbf{F} \cdot \mathbf{n} = 0$ on two of those pieces.)