Math 32B - Fall 2019
 Practice Exam 2

Full Name:

UID: \qquad

Circle the name of your TA and the day of your discussion:

Steven Gagniere
Jason Snyder
Ryan Wilkinson
Tuesday
Thursday

Instructions:

- Read each problem carefully.
- Show all work clearly and circle or box your final answer where appropriate.
- Justify your answers. A correct final answer without valid reasoning will not receive credit.
- Simplify your answers as much as possible.
- Include units with your answer where applicable.
- Calculators are not allowed but you may have a 3×5 inch notecard.

Page	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total:	100	

1. (20 points) Let $\mathbf{F}(x, y, z)=\left\langle e^{y}, x e^{y},(z+1) e^{z}\right\rangle$ and let \mathcal{C} be the curve parameterized by $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ for $0 \leq t \leq 1$.
(a) Show that the vector field \mathbf{F} is conservative.
(b) Find a potential function for \mathbf{F}.
(c) Use parts (a) and (b) to evaluate $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$.
(d) Is there a vector field \mathbf{G} on \mathbb{R}^{3} such that $\operatorname{curl} \mathbf{G}=\mathbf{F}$?
2. (10 points) Evaluate the line integral $\int_{\mathcal{C}}\left(x^{2}+y^{2}+z^{2}\right) d s$ where \mathcal{C} is the helix parameterized by $x=t, y=\cos 2 t, z=\sin 2 t$ for $0 \leq t \leq 2 \pi$.
3. (10 points) Evaluate the line integral $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y, z)=\langle 2 y+z, x-3 z, x+y\rangle$ and \mathcal{C} is the line segment from $(1,0,2)$ to $(2,3,-1)$.
4. (20 points) The velocity field of a fluid is given by $\mathbf{F}(x, y, z)=\left\langle x, y, z^{4}\right\rangle$. Find the flux of the fluid across the closed surface given by $z^{2}=x^{2}+y^{2}$ for $0 \leq z \leq 1$ and $x^{2}+y^{2} \leq 1$ at $z=1$ with positive orientation.
5. (20 points) Let S be a portion of the helicoid parameterized by

$$
\mathbf{r}(u, v)=\langle u \cos v, u \sin v, v\rangle \quad \text { for } \quad 0 \leq u \leq 1, \quad 0 \leq v \leq \pi
$$

(a) Compute $\iint_{\mathcal{S}} 2 y d S$.
(b) Let $\mathbf{F}(x, y, z)=\langle x, y, z\rangle$ and compute $\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}$.
6. (10 points) Let $\mathbf{F}(x, y)=\left\langle y^{2} \cos x, x^{2}+2 y \sin x\right\rangle$ and let \mathcal{C} be the path along the triangle from $(0,0)$ to $(2,6)$ to $(2,0)$ and back to $(0,0)$. Use Green's Theorem to evaluate $\oint_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$.
7. (10 points) Use Green's Theorem to find the area of the annulus \mathcal{R} bounded by two circles centered at the origin, one with radius 3 and the other with radius 5. (You should be able to check your answer easily by computing the area another way).

