Math 32B - Fall 2019 Practice Exam 2

Full Name:			
UID:			
Circle the name of your TA a	and the day of yo	ur discussion:	
Steven Gagniere	Jason Snyder	Ryan Wilkinson	
Tuesday	T	hursday	
Instructions:			
• Read each problem carefully.			
• Show all work clearly and circle or box your final answer where appropriate.			
• Justify your answers. A correct final answer without valid reasoning will not receive credit.			

- Simplify your answers as much as possible.
- Include units with your answer where applicable.
- Calculators are not allowed but you may have a 3×5 inch notecard.

Page	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total:	100	

- 1. (20 points) Let $\mathbf{F}(x, y, z) = \langle e^y, xe^y, (z+1)e^z \rangle$ and let \mathcal{C} be the curve parameterized by $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$ for $0 \le t \le 1$.
 - (a) Show that the vector field **F** is conservative.

(b) Find a potential function for **F**.

(c) Use parts (a) and (b) to evaluate $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$.

(d) Is there a vector field **G** on \mathbb{R}^3 such that curl $\mathbf{G} = \mathbf{F}$?

2. (10 points) Evaluate the line integral $\int_{\mathcal{C}} (x^2 + y^2 + z^2) ds$ where \mathcal{C} is the helix parameterized by $x = t, y = \cos 2t, z = \sin 2t$ for $0 \le t \le 2\pi$.

3. (10 points) Evaluate the line integral $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y, z) = \langle 2y + z, x - 3z, x + y \rangle$ and \mathcal{C} is the line segment from (1, 0, 2) to (2, 3, -1). 4. (20 points) The velocity field of a fluid is given by $\mathbf{F}(x, y, z) = \langle x, y, z^4 \rangle$. Find the flux of the fluid across the closed surface given by $z^2 = x^2 + y^2$ for $0 \le z \le 1$ and $x^2 + y^2 \le 1$ at z = 1 with positive orientation.

5. (20 points) Let S be a portion of the helicoid parameterized by

$$\mathbf{r}(u,v) = \langle u\cos v, u\sin v, v \rangle \quad \text{for} \quad 0 \le u \le 1, \quad 0 \le v \le \pi.$$
(a) Compute $\iint_{\mathcal{S}} 2y \, dS.$

(b) Let $\mathbf{F}(x, y, z) = \langle x, y, z \rangle$ and compute $\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}$.

6. (10 points) Let $\mathbf{F}(x, y) = \langle y^2 \cos x, x^2 + 2y \sin x \rangle$ and let \mathcal{C} be the path along the triangle from (0, 0) to (2, 6) to (2, 0) and back to (0, 0). Use Green's Theorem to evaluate $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$.

7. (10 points) Use Green's Theorem to find the area of the annulus \mathcal{R} bounded by two circles centered at the origin, one with radius 3 and the other with radius 5. (You should be able to check your answer easily by computing the area another way).