Math 32B - Fall 2019

Exam 2

Full Name:					
UID:					
Circle the name of your TA and the day of your discussion:					
Steven Gagniere	2	Jason Snyder	Ryan Wilkinson		
	Tuesday		Thursday		
Instructions:					
• Read each problem carefully.					
• Show all work clearly and circle or box your final answer where appropriate.					
• Justify your a will not receiv	• Justify your answers. A correct final answer without valid reasoning will not receive credit.				
• Simplify your	• Simplify your answers as much as possible.				

- Include units with your answer where applicable.
- Calculators are not allowed but you may have a 3×5 inch notecard.

Page	Points	Score
1	20	
2	30	
3	25	
4	25	
Total:	100	

THIS PAGE LEFT INTENTIONALLY BLANK

You may use this page for scratch work. Work found on this page will not be graded unless clearly indicated in the exam.

- 1. (20 points) Let $\mathbf{F}(x, y, z) = \langle 2xy^2z, 2x^2yz, x^2y^2 + 2z \rangle$ and let \mathcal{C} be the line segment from (1, 1, 3) to (1, 1, -2).
 - (a) Show that the vector field \mathbf{F} is conservative using curl.

(b) Find a function f such that $\mathbf{F} = \nabla f$.

(c) Use part (b) to evaluate
$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$$
.

(d) Is there a vector field **G** defined on \mathbb{R}^3 such that curl $\mathbf{G} = \mathbf{F}$?

2. (15 points) Consider the vector field

$$\mathbf{F}(x,y) = \langle F_1, F_2 \rangle = \left\langle \frac{3}{x-y}, \frac{3}{y-x} \right\rangle.$$
(a) Show that $\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}.$

(b) Show that **F** is defined on two distinct connected domains in the plane. On each of these domains, is **F** conservative? *Hint:* Are these domains simply connected?

3. (15 points) Find the work done by the force field $\mathbf{F}(x, y, z) = \langle x^2, y^2, z^3 \rangle$ in moving a particle along the line segment from (0, 0, 0) to (1, 2, 2).

4. (25 points) Let C be the curve given by the line segments from (0,0) to (10,0) to (10,10) to (0,10) as pictured below. Evaluate $\int_{C} (e^{x^2} + 2y) dx + (5x + 2y) dy$. *Hint:* Complete C to form a closed curve and use Green's Theorem.

5. (25 points) Consider the vector field $\mathbf{F}(x, y, z) = \langle x^2, y^2, 2z \rangle$ and the surface \mathcal{S} given by z = xy for $0 \le x \le 1$ and $0 \le y \le 1$. Suppose \mathcal{S} is oriented with upward normal. Find the flux $\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}$.