Math 32B - Fall 2019
 Practice Exam 1

Full Name:

UID: \qquad

Circle the name of your TA and the day of your discussion:

Steven Gagniere
Jason Snyder
Ryan Wilkinson
Tuesday
Thursday

Instructions:

- Read each problem carefully.
- Show all work clearly and circle or box your final answer where appropriate.
- Justify your answers. A correct final answer without valid reasoning will not receive credit.
- Simplify your answers as much as possible.
- Include units with your answer where applicable.
- Calculators are not allowed but you may have a 3×5 inch notecard.

Page	Points	Score
1	20	
2	20	
3	15	
4	20	
5	25	
Total:	100	

1. (10 points) Evaluate the iterated integral.

$$
\int_{0}^{4} \int_{\sqrt{y}}^{2} \sqrt{x^{3}+1} d x d y
$$

2. (10 points) Evaluate the iterated integral.

$$
\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} e^{x^{2}+y^{2}} d y d x
$$

3. (10 points) Find the volume of the solid enclosed by $z=0, y=z$, and $x^{2}+y^{2}=4$.
4. (10 points) Use a triple integral to find the volume of the solid enclosed by $y=x^{2}$, $z=3 y$, and $z=2+y$.
5. (15 points) Consider the tetrahedron bounded by the coordinate planes and the plane $x+y+z=1$ with density function $\delta(x, y, z)=12 y$.
6. Find the mass of the tetrahedron.
7. Set up but DO NOT EVALUATE the integrals used to find the center of mass of the tetrahedron.
8. (20 points) Evaluate the triple integral $\iiint_{E} x^{2} d V$ where E is the solid above $z=0$ and inside $4 x^{2}+9 y^{2}+z^{2}=36$.
9. (10 points) Find the area inside one petal of the polar rose $r=\sin (2 \theta)$.
10. (15 points) Use a change of variables to evaluate $\iint_{\mathcal{D}} x d A$ where \mathcal{D} is the region in the first quadrant bounded by $y=0, y=4, y=x^{2}$, and $y=x^{2}-4$.
