Math 32B - Fall 2019 Exam 1 - V1

Full Name:		
UID:		
Circle the name of your T	A and the day of y	our discussion:
Steven Gagniere	Jason Snyder	Ryan Wilkinson
Tuesd	lay	Thursday
Instructions:		
• Read each problem	carefully.	
• Show all work clearly and circle or box your final answer where appropriate.		
• Justify your answers. A correct final answer without valid reasoning will not receive credit.		

- Simplify your answers as much as possible.
- Include units with your answer where applicable.
- Calculators are not allowed but you may have a 3×5 inch notecard.

Page	Points	Score
1	25	
2	25	
3	25	
4	25	
Total:	100	

THIS PAGE LEFT INTENTIONALLY BLANK

You may use this page for scratch work. Work found on this page will not be graded unless clearly indicated in the exam.

$$\int_0^2 \int_{y/2}^1 \cos\left(\frac{\pi}{6}x^2\right) \, dx \, dy.$$

 $2.\ (10 \text{ points})$ Evaluate the iterated integral.

$$\int_{-4}^{4} \int_{0}^{\sqrt{16-x^2}} \frac{1}{\sqrt{1+x^2+y^2}} \, dy \, dx$$

3. (10 points) Find a constant C such that

$$p(x,y) = \begin{cases} Cx^2y & \text{if } 0 \le y \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

is a joint probability density function.

4. (15 points) Use a triple integral to find the volume of the solid enclosed by $x = y^2 + z^2$ and $x = 8 - y^2 - z^2$.

- 5. (25 points) Let \mathcal{W} be the solid inside the sphere $x^2 + y^2 + z^2 = 4$ for $z \ge 1$. Set up but **DO NOT EVALUATE** a triple integral in each of the following coordinate systems that computes the mass of the solid \mathcal{W} , assuming it has density function $\delta(x, y, z) = 7xy$.
 - 1. Rectangular coordinates

2. Cylindrical coordinates

3. Spherical coordinates

6. (10 points) Use a double integral to find the area inside one loop of the polar rose $r = 3\sin(4\theta)$. *Hint:* You may use the double angle formula $\sin^2(x) = \frac{1 - \cos(2x)}{2}$.

7. (15 points) Use a change of variables to evaluate $\iint_{\mathcal{R}} \cos(4x^2 + 9y^2) dA$ where \mathcal{R} is the region in the first quadrant of the *xy*-plane bounded by the ellipse $4x^2 + 9y^2 = 1$.