1. Let $f(x,y) = \frac{2xy^2}{x^2 + y^2}$. In this problem you will show that $\lim_{(x,y) \to (0,0)} f(x,y) = 0$.

(a) Write the definition of the limit in this context using ε and δ .

- (b) For the scratch work, we will start with the expression $\left|\frac{2xy^2}{x^2+y^2}-0\right|$ and try to relate it to $\sqrt{x^2+y^2}$. In the first expression, replace x in the numerator with $\sqrt{x^2}$. Why is this valid?
- (c) Now replace the term $\sqrt{x^2}$ with $\sqrt{x^2 + y^2}$. How is this related to the previous expression? (*Hint:* Write an inequality.)
- (d) Next replace y^2 in the numerator (the term not under the square root) with $x^2 + y^2$. How is this related to the previous expression?
- (e) Simplify the expression above. You should end up with a number multiplied by $\sqrt{x^2 + y^2}$. The coefficient should tell you how to choose δ from ε .
- (f) Now let $\varepsilon > 0$ be arbitrary. Then choose an appropriate δ (which will be an expression involving ε). Show that if $0 < \sqrt{x^2 + y^2} < \delta$ for your choice of δ , then indeed $\left| \frac{2xy^2}{x^2 + y^2} 0 \right| < \varepsilon$.

2. Let $f(x, y, z) = xyz - z^2$, where $x = r \cos \theta$, $y = r \sin \theta$, and z = r. Use the chain rule to calculate the partial derivatives $\frac{\partial f}{\partial \theta}$ and $\frac{\partial f}{\partial r}$.

3. Let x = 4s + t and y = 4s - t. Show that for any differentiable function f(x, y),

$$\left(\frac{\partial f}{\partial x}\right)^2 - \left(\frac{\partial f}{\partial y}\right)^2 = \frac{1}{4} \frac{\partial f}{\partial s} \frac{\partial f}{\partial t}.$$

- 4. Consider the surface defined by $\sin(xyz) = x + 2y + 3z$.
 - (a) Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ by first applying the differential operators $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$.

(b) Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ by first writing F(x, y, z) = 0.

⁽c) Check that your answers in parts (a) and (b) agree.