Math 32A, Winter 2019

1. Let $f(x, y)=\frac{2 x y^{2}}{x^{2}+y^{2}}$. In this problem you will show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$.
(a) Write the definition of the limit in this context using ε and δ.
(b) For the scratch work, we will start with the expression $\left|\frac{2 x y^{2}}{x^{2}+y^{2}}-0\right|$ and try to relate it to $\sqrt{x^{2}+y^{2}}$. In the first expression, replace x in the numerator with $\sqrt{x^{2}}$. Why is this valid?
(c) Now replace the term $\sqrt{x^{2}}$ with $\sqrt{x^{2}+y^{2}}$. How is this related to the previous expression? (Hint: Write an inequality.)
(d) Next replace y^{2} in the numerator (the term not under the square root) with $x^{2}+y^{2}$. How is this related to the previous expression?
(e) Simplify the expression above. You should end up with a number multiplied by $\sqrt{x^{2}+y^{2}}$. The coefficient should tell you how to choose δ from ε.
(f) Now let $\varepsilon>0$ be arbitrary. Then choose an appropriate δ (which will be an expression involving ε). Show that if $0<\sqrt{x^{2}+y^{2}}<\delta$ for your choice of δ, then indeed $\left|\frac{2 x y^{2}}{x^{2}+y^{2}}-0\right|<\varepsilon$.
2. Let $f(x, y, z)=x y z-z^{2}$, where $x=r \cos \theta, y=r \sin \theta$, and $z=r$. Use the chain rule to calculate the partial derivatives $\frac{\partial f}{\partial \theta}$ and $\frac{\partial f}{\partial r}$.
3. Let $x=4 s+t$ and $y=4 s-t$. Show that for any differentiable function $f(x, y)$,

$$
\left(\frac{\partial f}{\partial x}\right)^{2}-\left(\frac{\partial f}{\partial y}\right)^{2}=\frac{1}{4} \frac{\partial f}{\partial s} \frac{\partial f}{\partial t}
$$

4. Consider the surface defined by $\sin (x y z)=x+2 y+3 z$.
(a) Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ by first applying the differential operators $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$.
(b) Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ by first writing $F(x, y, z)=0$.
(c) Check that your answers in parts (a) and (b) agree.
