- 1. Let f(x) = 5x. In this problem you will show that $\lim_{x \to 1} f(x) = 5$.
 - (a) Write the definition of the limit in this context using ε and δ .

(b) Let $\varepsilon = 1$. How small does δ have to be so that if $|x - 1| < \delta$ then |5x - 5| < 1? (*Hint:* Factor out a 5.)

(c) Let $\varepsilon = \frac{1}{2}$. How small does δ have to be so that if $|x - 1| < \delta$ then $|5x - 5| < \frac{1}{2}$?

(d) Now let $\varepsilon > 0$ be arbitrary. Then choose an appropriate δ (which will be an expression involving ε). Show that if $0 < |x - 1| < \delta$ for your choice of δ , then $|5x - 5| < \varepsilon$.

2. Either give an example of a function f(x, y) with partial derivatives $f_x(x, y) = 2x + y^2 \cos x$ and $f_y(x, y) = x^2 + y^2 \sin x$ or show that no such function f can exist.

3. Use the chain rule to calculate $\frac{d}{dt}f(\mathbf{r}(t))$ if $f(x,y) = 3\ln(x) + \ln(y)$ and $\mathbf{r}(t) = \langle \cos t, t^2 \rangle$ at $t = \frac{\pi}{4}$.

4. Find the directional derivative of $f(x, y, z) = xyz + z^3$ at the point P = (-3, 2, -1) in the direction pointing to the origin.

- 5. Consider the function $f(x, y) = e^{xy-y^2}$.
 - (a) Use a linear approximation to f(x, y) at the point (1, 1) to estimate the value of f(1.02, 1.01).

(b) Find the directional derivative of f at the point (1,1) in the direction of $\langle 3,4\rangle$.

(c) Find the maximum rate of change of f at the point (1, 1).