Math 32A, Winter 2019 WS - Week 8 Full Name:

1. Let $f(x)=5 x$. In this problem you will show that $\lim _{x \rightarrow 1} f(x)=5$.
(a) Write the definition of the limit in this context using ε and δ.
(b) Let $\varepsilon=1$. How small does δ have to be so that if $|x-1|<\delta$ then $|5 x-5|<1$? (Hint: Factor out a 5.)
(c) Let $\varepsilon=\frac{1}{2}$. How small does δ have to be so that if $|x-1|<\delta$ then $|5 x-5|<\frac{1}{2}$?
(d) Now let $\varepsilon>0$ be arbitrary. Then choose an appropriate δ (which will be an expression involving ε). Show that if $0<|x-1|<\delta$ for your choice of δ, then $|5 x-5|<\varepsilon$.
2. Either give an example of a function $f(x, y)$ with partial derivatives $f_{x}(x, y)=2 x+y^{2} \cos x$ and $f_{y}(x, y)=x^{2}+y^{2} \sin x$ or show that no such function f can exist.
3. Use the chain rule to calculate $\frac{d}{d t} f(\mathbf{r}(t))$ if $f(x, y)=3 \ln (x)+\ln (y)$ and $\mathbf{r}(t)=\left\langle\cos t, t^{2}\right\rangle$ at $t=\frac{\pi}{4}$.
4. Find the directional derivative of $f(x, y, z)=x y z+z^{3}$ at the point $P=(-3,2,-1)$ in the direction pointing to the origin.
5. Consider the function $f(x, y)=e^{x y-y^{2}}$.
(a) Use a linear approximation to $f(x, y)$ at the point $(1,1)$ to estimate the value of $f(1.02,1.01)$.
(b) Find the directional derivative of f at the point $(1,1)$ in the direction of $\langle 3,4\rangle$.
(c) Find the maximum rate of change of f at the point $(1,1)$.
