1. Partial differential equations or PDEs are equations involving partial derivatives of a multivariable function. Some well known PDEs that are important in physics are the Laplace equation $f_{x x}+f_{y y}=0$ and the wave equation $f_{x x}=c^{2} f_{y y}$ for some constant c.
(a) Show that $f(x, y)=e^{x} \cos y$ is a solution to the Laplace equation.
(b) Show that $f(x, y)=e^{-(x+y)^{2}}$ is a solution to the wave equation.
(c) Is $f(x, y)=x^{3}-3 x y^{2}$ a solution to either of these PDEs?
2. Assume Clairaut's theorem holds (on some domain) for each of the following functions and compute the partial derivatives.
(a) Find $f_{x y x y x y}$ for $f(x, y)=x^{2} \cos \left(e^{y}+y^{2}\right)$.
(b) Find $f_{x x x y y}$ for $f(x, y)=x^{3} y^{2}-\frac{y}{x+\ln (x)}$.
3. Either give an example of a function $f(x, y)$ with the following partial derivatives or show that no such function can exist.

$$
\begin{gathered}
\frac{\partial f}{\partial x}=2 x+y \cos (x y)-y^{3}, \quad \text { and } \\
\frac{\partial f}{\partial y}=x \cos (x y)-3 x y^{2} .
\end{gathered}
$$

4. Consider the contour plot for $f(x, y)$ below.

Determine the sign of each of the following derivatives.

$$
\begin{aligned}
& f_{x}(1,0) \\
& f_{y}(1,0) \\
& f_{x x}(1,0) \\
& f_{x y}(1,0) \\
& f_{y y}(1,0) \\
& f_{x}(2,1) \\
& f_{y}(2,1) \\
& f_{x x}(2,1) \\
& f_{x y}(2,1) \\
& f_{y y}(2,1)
\end{aligned}
$$

