- 1. Consider the curve $\mathbf{r}(t) = \langle \sin(2t), -\cos(2t), 4t \rangle$.
 - (a) Find the Frenet frame for $\mathbf{r}(t)$ at the point $(0, 1, 2\pi)$.

(b) Find the curvature $\kappa(t)$ of $\mathbf{r}(t)$.

(c) The normal plane to a curve at a point P is the plane formed by the normal and binormal vectors at the point P. Find an equation for the normal plane to the curve $\mathbf{r}(t)$ at the points $(0, 1, 2\pi)$.

2. A particle has acceleration function $\mathbf{a}(t) = \langle 6t, 12t^2, \cos(2t) \rangle$, with initial velocity $\mathbf{v}(0) = \langle 2, 0, 1 \rangle$, and initial position $\mathbf{r}(0) = \langle 0, 2, 0 \rangle$. Find the position of the particle at t = 2.

3. Show that the following limit does not exist.

$$\lim_{(x,y)\to(0,0)}\frac{y^2\sin^2 x}{x^4 + y^4}$$

4. Match each function with its contour plot (level curves) below.

