Math 32A, Winter 2019 WS - Week $6 \quad$ Full Name:

1. Consider the curve $\mathbf{r}(t)=\langle\sin (2 t),-\cos (2 t), 4 t\rangle$.
(a) Find the Frenet frame for $\mathbf{r}(t)$ at the point $(0,1,2 \pi)$.
(b) Find the curvature $\kappa(t)$ of $\mathbf{r}(t)$.
(c) The normal plane to a curve at a point P is the plane formed by the normal and binormal vectors at the point P. Find an equation for the normal plane to the curve $\mathbf{r}(t)$ at the points $(0,1,2 \pi)$.
2. A particle has acceleration function $\mathbf{a}(t)=\left\langle 6 t, 12 t^{2}, \cos (2 t)\right\rangle$, with initial velocity $\mathbf{v}(0)=\langle 2,0,1\rangle$, and initial position $\mathbf{r}(0)=\langle 0,2,0\rangle$. Find the position of the particle at $t=2$.
3. Show that the following limit does not exist.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2} \sin ^{2} x}{x^{4}+y^{4}}
$$

4. Match each function with its contour plot (level curves) below.
(a) $f(x, y)=\sin (y)$ \qquad
(b) $f(x, y)=\left(x^{2}-y^{2}\right)^{2}$ \qquad
(c) $f(x, y)=3-x^{2}-y^{2}$ \qquad
(d) $f(x, y)=\sin (x) \sin (y) e^{-x^{2}-y^{2}}$ \qquad
(e) $f(x, y)=(x-y)^{2}$ \qquad
(f) $f(x, y)=\frac{1}{1+x^{2}+y^{2}}$

(ii)

(iii)

(v)

(vi)

