1. Find the point at which the line $\mathbf{r}(t)=\langle 2-t, 1+3 t, 4 t\rangle$ intersects the plane $2 x-y+z=2$.
2. Find an equation of the plane that is perpendicular to the plane $x+y-2 z=1$ and contains the line of intersection of the two planes $x-z=1$ and $y+2 z=3$.
3. Parametrize the intersection of the surfaces $x^{2}+y^{2}=9$ and $z=x y$ using a single parametrization.
4. Two particles travel along the space curves $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ and $\mathbf{q}(t)=\langle 1+2 t, 1+6 t, 1+14 t\rangle$. Do the particles collide? Do their paths intersect?
5. Sketch the curve with the vector equation $\mathbf{r}(t)=\langle t, \sin (2 t), \cos (2 t)\rangle$. Draw an arrow to indicate the direction a particle with this parametrization would travel.
6. Find parametric equations for the tangent line to the helix $\mathbf{r}(t)=\langle 2 \cos t, \sin t, t\rangle$ at the point ($0,1, \pi / 2$).
7. Choose the picture that each equation describes.
(a) $z=\cos (x-y)$ \qquad (b) $x^{2}-y-z^{2}=0$ \qquad (c) $x^{2}-y+z^{2}=1$ \qquad
(d) $x^{2}-y^{2}+z^{2}=0$ \qquad (e) $x^{2}-y^{2}+z^{2}=-1$ \qquad

(A)

(D)

(G)

(B)

(E)

(H)

(C)

(F)

(I)
