1. Assume that $\|\mathbf{v}\|=2$ and $\|\mathbf{w}\|=3$, and that the angle between \mathbf{v} and \mathbf{w} is $\frac{2 \pi}{3}$.
(a) Find $\mathbf{v} \cdot \mathbf{w}$.
(b) Find $\|\mathbf{v}+2 \mathbf{w}\|$.
(c) Find $\|\mathbf{v}-2 \mathbf{w}\|$.
2. Show that if $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{v}$ are orthogonal, then the vectors \mathbf{u} and \mathbf{v} must have the same magnitude.
3. Consider the vectors $\mathbf{u}=\mathbf{i}+5 \mathbf{j}-2 \mathbf{k}, \mathbf{v}=3 \mathbf{i}-\mathbf{j}$, and $\mathbf{w}=5 \mathbf{i}+9 \mathbf{j}-4 \mathbf{k}$.
(a) Use the equation of a plane to show the three vectors are coplanar.
(b) Use the scalar triple product to show the three vectors are coplanar.
4. Consider the sphere with radius 4 and center $(7,-2,-1)$. Find the point on the sphere that is closest to the plane $2 x-3 y-z=-7$.
5. Find the equation of the plane that contains the line $x=3+2 t, y=t, z=8-t$ and is parallel to the plane $2 x+4 y+8 z=17$.
