1. Describe in words and sketch a picture of the region in \mathbb{R}^{3} represented by the following inequality.

$$
1 \leq \frac{x^{2}}{4}+y^{2} \leq 4
$$

2. Show the following equation represents a sphere, then find its center and radius.

$$
x^{2}+y^{2}+z^{2}-2 x-4 y+8 z+17=0
$$

3. Find parametric equations of the line through the point $(0,14,-10)$, parallel to the following line.

$$
\mathbf{r}(t)=\langle-1+2 t, 6-3 t, 3+9 t\rangle
$$

4. Find a vector equation of the line parametrizing the path of a particle that arrives at the point $(2,0,-3)$ at $t=0$ and $(-1,-1,0)$ at $t=2$.
5. Show that the following lines L_{1} and L_{2} are skew lines, that is they do not intersect and they are not parallel.

$$
L_{1}: \mathbf{r}(t)=\langle 1+t,-2+3 t, 4-t\rangle, \quad L_{2}: \mathbf{r}(t)=\langle 2 t, 3+t,-3+4 t\rangle
$$

6. In this problem you will use the Law of Cosines to derive the following property of the dot product.

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta
$$

Consider the triangle pictured below.

(a) Let \mathbf{v} denote the vector $\overrightarrow{A B}$ and \mathbf{w} denote the vector $\overrightarrow{A C}$, and let θ be the angle between them. Find $\mathbf{v}-\mathbf{w}$ in the picture.
(b) Use the Law of Cosines to find $\|\mathbf{v}-\mathbf{w}\|^{2}$ in terms of $\|\mathbf{v}\|,\|\mathbf{w}\|$, and θ.
(c) Use algebraic properties of the dot product to show the following equation holds.

$$
\|\mathbf{v}-\mathbf{w}\|^{2}=\|\mathbf{v}\|^{2}-2 \mathbf{v} \cdot \mathbf{w}+\|\mathbf{w}\|^{2}
$$

(d) Set the formulas from parts (b) and (c) equal to each other, then simplify to complete the proof.

