Math 32A, Winter 2019
WS - Week 10
Full Name:

1. Find and classify all critical points of the function

$$
f(x, y)=3-2 x^{4}+5 x^{2}-2 x y+y^{2} .
$$

2. Find the global extreme values of the function

$$
f(x, y)=x^{2}+4 y-4 x y+2
$$

over the region bounded by $y=x, y=0$, and $x=2$.
3. If a function of one variable is continuous on an interval and has only one critical point, then a local maximum has to be a global maximum. This is not true for functions of two variables. Show that the function

$$
f(x, y)=3 x e^{y}-x^{3}-e^{3 y}
$$

has exactly one critical point. Show that f has a local maximum at this critical point but that f has no global maximum. Use a computer to graph the function to see how this is possible.
4. Consider the function $f(x, y)=x^{3}-3 x y^{2}$.
(a) Show that f has only one critical point and that at this point the second partials test is inconclusive.
(b) Classify the critical point another way. (Hint: Consider restricting the function to the x-axis.)
(c) Use a computer to graph the function and check your answer to part (b). The graph is called a monkey saddle.

