Math 32A - Winter 2019 Practice Final Exam

Full Name:

UID: \qquad

Circle the name of your TA and the day of your discussion:
Qi Guo Talon Stark Tianqi (Tim) Wu Tuesday

Thursday

Instructions:

- Read each problem carefully.
- Show all work clearly and circle or box your final answer where appropriate.
- Justify your answers. A correct final answer without valid reasoning will not receive credit.
- Simplify your answers as much as possible.
- Include units with your answer where applicable.
- Calculators are not allowed but you may have a 3×5 inch notecard.

Page	Points	Score
1	10	
2	10	
3	8	
4	10	
5	12	
6	12	

Page	Points	Score
7	12	
8	10	
9	6	
10	10	
Bonus		
Total:	100	

1. (2 points) Suppose \mathbf{u} is a unit vector and \mathbf{v} is a vector with $\|\mathbf{v}\|=5$. If the angle θ between \mathbf{u} and \mathbf{v} has $\sin \theta=\frac{3}{5}$, find the length of $\mathbf{u} \times \mathbf{v}$.
2. (3 points) Given a curve with binormal \mathbf{B}, show that $\frac{d \mathbf{B}}{d s}$ is perpendicular to \mathbf{B}.
3. (5 points) Consider the planes $3 x-2 y+z=1$ and $2 x+y-3 z=3$, which intersect in a line L.
(a) Notice that the point $P=(1,1,0)$ is in the intersection of the planes and so is on L. Use P to find a vector equation for L.
(b) If θ is the angle between the planes, find $\cos \theta$.
4. (5 points) Find the equation of the plane that passes through the point $(1,2,3)$ and contains the line given by the parametric equations $x=3 t, y=1+t, z=2-t$.
5. (2 points) Suppose that $w=f(x, y, z), y=g(s, t)$, and $z=h(t)$. Write down the form of the chain rule you would use to compute $\partial w / \partial s$ and $\partial w / \partial t$.
6. (3 points) Find parametric equations for the line normal to the surface $\sin (x y z)=x+$ $2 y+3 z$ at the point $(2,-1,0)$.
7. (3 points) For what values of x are the following vectors orthogonal?

$$
\mathbf{v}=\langle x, x-1, x+1\rangle \quad \mathbf{w}=\langle 1-x, x+3,3 x\rangle
$$

8. (5 points) Reparametrize the following curve with respect to arc length.

$$
\mathbf{r}(t)=\left(\frac{2}{t^{2}+1}-1\right) \mathbf{i}+\left(\frac{2 t}{t^{2}+1}\right) \mathbf{j}
$$

9. (5 points) The radius of a cylindrical can with top and bottom is increasing at the rate of $4 \mathrm{~cm} / \mathrm{sec}$ but its total surface area remains constant at $600 \pi \mathrm{~cm}^{2}$. At what rate is the height changing when the radius is 10 cm ?
10. (2 points) Show that the following function is not continous at $(0,0)$.

$$
f(x, y)= \begin{cases}\frac{x^{2}-y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

11. (3 points) Show the following limit does not exist.

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y+y z}{x^{2}+y^{2}+z^{2}}
$$

12. (6 points) Let $F(x, y, z)=x y+2 x z-y^{2}+z^{2}$.
(a) Find the directional derivative of $F(x, y, z)$ at the point $(1,-2,1)$ in the direction of the vector $\mathbf{v}=\langle 1,1,2\rangle$.
(b) Find the maximum rate of change of $F(x, y, z)$ at the point $(1,-2,1)$.
13. (6 points) Find and classify all critical points of the function $f(x, y)=2 x^{2} y-8 x y+y^{2}+5$.
14. (12 points) Use Lagrange multipliers to find the points on the surface $x^{2}+x y+y^{2}+z^{2}=1$ that are closest to the origin.
15. (12 points) Let $f(x, y)=3+x y-x-2 y$ and T be the closed triangular region with vertices $(1,0),(5,0)$, and $(1,4)$. Find the absolute maximum and absolute minimum values of f on T. Be sure to justify your answer.
16. (5 points) Find the linearization $L(x, y)$ to $f(x, y)=1+x \ln (x y-5)$ at the point $(2,3)$ and use it to approximate $f(2.01,2.95)$.
17. (5 points) Consider the function $f(x, y, z)=z^{2}$ restricted to the surface $x^{2}+y^{2}-z=0$. Show the method of Lagrange multipliers only gives one candidate for an extremum. Show this candidate is where f has its minimum value on the surface and that f has no maximum on the surface.
18. (2 points) Find and sketch the domain of the function $f(x, y)=\sqrt{1+x-y^{2}}$.
19. (2 points) For $f(x, y)=\cos (x)-y$, sketch and label the level curves $z=-1, z=0$, and $z=1$.
20. (2 points) Is the following domain closed? Is it bounded?

$$
\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2} \leq z \leq 4+x+y\right\}
$$

21. (10 points) Consider the contour plot for $f(x, y)$ below.

(a) If a person walked from the point $(1,-1)$ to $(1,0)$, would they be walking uphill or downhill?
(b) If a person walked from the point $(0,0)$ to $(1,1)$, would they be walking uphill or downhill?
(c) Is the slope steeper at $(0,-1)$ or $(2,-2)$?
(d) Is f_{y} positive or negative at $(-1,1)$?
(e) Determine the sign of each of the following derivatives.

(f) Give the components of a unit vector in the direction of ∇f at the point $(-1,1)$. (You may estimate as necessary.)
