Math 32A - Winter 2019 Practice Exam 1

Full Nam	ne:	
UID:		
Circle the name of	of your TA and the day	of your discussion:
Qi Guo	Talon Stark	Tianqi (Tim) Wu
	Tuesday	Thursday
Instructions:		
• Read each	problem carefully.	
• Show all appropria	0	box your final answer where
- Instifution	un angurang A connect final	anguan without valid reagoning

- Justify your answers. A correct final answer without valid reasoning will not receive credit.
- Simplify your answers as much as possible.
- Include units with your answer where applicable.
- Calculators are not allowed but you may have a 3×5 inch notecard.

Page	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total:	100	

- 1. (3 points) True or False? Given two vectors \mathbf{a} and \mathbf{b} , if $||\mathbf{a}|| = ||\mathbf{b}||$ then $\mathbf{a} = \mathbf{b}$.
 - (a) True. (b) False.
- 2. (3 points) True or False? For any two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^3 , $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = 0$.
 - (a) True. (b) False.
- 3. (4 points) Describe in words and sketch a picture of the region of \mathbb{R}^3 represented by the following inequality.

$$1 \le \frac{x^2}{4} - y^2 \le 4$$

4. (10 points) Let L be the line through the points (1, 0, 7) and (3, -1, 5). Does L intersect the plane x + y + z = 6? If not, justify your answer. If L does intersect the plane, find the intersection.

- 5. Consider the points P = (3, 3, 1), Q = (2, -1, 0), and R = (-1, -3, 1).
 - (a) (10 points) Find the equation of the plane containing the P, Q, and R.

(b) (5 points) Find the area of the triangle formed by the points P, Q, and R.

(c) (5 points) Are the four points P, Q, R, and S = (7, 4, 0) coplanar? Justify your answer.

/20

6. (5 points) Find the equation of the plane consisting of all points that are equidistant from the points (3, 5, 6) and (-5, 3, 2).

7. (15 points) Let L be the line given parametrically by x = 4 + t, y = -1 - 2t, z = 5 + t. Find the point on the line L which is closest to the point (-2, 2, -1). 8. (10 points) Find the angle of intersection of the two planes 2x+y+z = 6 and x+y-z = 3.

9. (5 points) Find a vector function that represents the curve of intersection of the surfaces $z = 4x^2 + y^2$ and $y = x^2$.

10. (5 points) Find a vector function that represents the curve of intersection of the surfaces $x^2 + y^2 = 4$ and $z = 4x^2$.

11. (5 points) Find a parametrization of the tangent line to $\mathbf{r}(t) = \langle 3t + 2, t^2 - 7, t - t^2 \rangle$ at $\mathbf{r}(1)$.

12. (15 points) Find the angle between the following two curves at their point of intersection. The angle between the two curves is the angle between the tangent lines to the curves at their point of intersection.

 $\mathbf{r}(t) = \langle t^3, 2t^2 + 1, 2t + 3 \rangle$ and $\mathbf{p}(t) = \langle t - 4, t - 3, t - 1 \rangle$