Read Section 6.11 and answer the following questions.

1. How do we define a rotation on a 1-dimensional inner product space?
2. Let V be a nonzero finite-dimensional real inner product space. Then there exists a collection of pairwise orthogonal T-invariant subspaces $\left\{W_{1}, \ldots, W_{m}\right\}$ such that

$$
V=W_{1} \oplus \cdots \oplus W_{m}
$$

(a) What can you say about the dimension of each W_{i} ?
(b) If you know $T_{W_{i}}$ is a reflection, what can you say about the dimension of W_{i} ?
3. Prove that if T is a reflection on a 2- dimensional inner product space then $T^{2}=I$.

