
Math 115B - Winter 2020

Practice Midterm Exam - Solutions

Full Name:

UID:

Instructions:

• Read each problem carefully.

• Show all work clearly and circle or box your final answer where
appropriate.

• Justify your answers. A correct final answer without valid reasoning
will not receive credit.

• All work including proofs should be well organized and clearly
written using complete sentences.

• You may use the provided scratch paper, however this work will
not be graded unless very clearly indicated there and in the exam.

• Calculators are not allowed but you may have a 3× 5 inch notecard.

Page Points Score

1 10

2 10

3 10

4 10

Total: 40
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1. (10 points) True or False: Prove or disprove the following statements.

Let V be a finite-dimensional inner product space over F = C. Let T : V → V be a a
linear operator and T ∗ its adjoint.

(a) The linear operator S = T + T ∗ is diagonalizable.

(b) If T is normal then ||Tv|| = ||T ∗v|| for all v ∈ V .

Solution:

(a) True.

Proof. Since S = T + T ∗ and T ∗∗ = T , we see that S∗ = T ∗ + T = S. So
S∗S = S2 = SS∗ and S is both self-adjoint and normal. Then by the spectral
theorem for normal operators, since V is a complex vector space, there exists
an orthonormal basis of eigenvectors for S. Hence S is diagonalizable.

(b) True.

Proof. Since T is normal T ∗T = TT ∗. Then for any v ∈ V we compute

||Tv||2 = 〈Tv, Tv〉
= 〈v, T ∗Tv〉
= 〈v, TT ∗v〉
= 〈T ∗v, T ∗v〉
= ||T ∗v||2.

So indeed ||Tv|| = ||T ∗v||.
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2. (10 points) Let V be a finite-dimensional vector space and let T and S be linear operators
on V . Suppose V is a T -cyclic subspace of itself. Show that T and U commute if and
only if U = g(T ) for some polynomial g(t).

Solution:

Proof. (=⇒) Assume that TU = UT . Since V is finite-dimensional and a T -cyclic
subspace of itself, there exists v ∈ V with β = {v, T (v), T 2(v), . . . , T n−1(v)} a basis
for V . Since U(v) ∈ V , there exist scalars a0, . . . , an−1 such that

U(v) = a0v + a1T (v) + · · ·+ an−1T
n−1(v).

Let g(t) = a0 + a1t + · · · + an−1t
n−1. Then U(v) = g(T )(v). Furthermore, for

1 ≤ k ≤ n− 1, since T and U commute we have

(U − g(T ))(T k(v)) = UT k(v)− g(T )T k(v)

= T kU(v)− T kg(T )(v)

= T k(U(v)− g(T )(v))

= 0.

Thus U − g(T ) is zero on every element of the basis for V and so U − g(T ) = 0,
which completes the proof that U = g(T ).

(⇐=) Now assume that U = g(T ) for some polynomial g(t). Then

TU = Tg(T ) = g(T )T = UT

since T commutes with any power of itself.
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3. (10 points) Let T : V → V be a linear operator on a finite-dimensional vector space over
a field F. Let T t : V ∗ → V ∗ be its dual. Show that a subspace W ⊆ V is T invariant if
and only if W 0 is T t-invariant.

Solution:

Proof. (=⇒) Assume that W ⊆ V is T -invariant. Recall that

W 0 = {f ∈ V ∗ | f(w) = 0 for all w ∈ W}

and that T t : V ∗ → V ∗ is defined by T t(g) = g ◦ T for all g ∈ V ∗.

Let f ∈ W 0. We want to show T t(f) ∈ W 0. That is, we want to show T t(f)(w) = 0
for any w ∈ W . So let w ∈ W and consider T t(f)(w) = f(T (w)). Since W is
T -invariant we have that T (w) ∈ W . Furthermore, since f ∈ W 0 it must be that
f(T (w)) = 0. So indeed, W 0 is T t-invariant.

(⇐=) Now suppose W 0 is T t-invariant. Let w ∈ W . We want to show T (w) ∈ W .
Assume to the contrary that T (w) /∈ W . Let {w1, . . . , wk} be a basis for W . Since
T (w) /∈ W we can take the linearly independent set {w1, . . . , wk, T (w)} and extend
it to a basis β for V . There exists f in the dual basis to β that evaluates to zero
on each basis element of β except f(T (w)) = 1. Since f(wi) = 0 for all i, the
functional f is zero on all elements of W and by definition f ∈ W 0. But then 1 =
f(T (w)) = T t(f)(w) implying T t(f) /∈ W 0, contradicting that W 0 is T t-invariant.
Thus T (w) ∈ W and W is T -invariant.
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4. (10 points) True or False: Prove or disprove the following statements.

(a) Let V be a finite-dimensional inner product space and let T : V → V be a linear
operator. If all the eigenvalues of T are 1, then T must be an isometry.

(b) Let β = {1, x, x2} be the standard basis for V = P2(R). There exists a basis for
V such that the dual basis for V ∗ is given by {f0, f1, f2} with f0(p(x)) = p(0),
f1(p(x)) = p(1), and f2(p(x)) = p(2).

Solution:

(a) False. Consider V = R2 and let T : V → V be defined by T (x, y) = (x, x+ y).
Then in the standard basis β we have

[T ]ββ = A =

(
1 1
0 1

)
.

The characteristic polynomial is pT (t) = det(T − tI) = det(A− tI) = (1− t)2.
The only roots are 1 and thus the eigenvalues of T are all 1. However, A 6= At

so T is not orthogonal and hence not an isometry.

(b) True.

Proof. We can write any p(x) = a0 + a1x+ a2x
2. Then

f0(p(x)) = p(0) = a0

f1(p(x)) = p(1) = a0 + a1 + a2

f2(p(x)) = p(2) = a0 + 2a1 + 4a2.

In particular, {f0, f1, f2} is linearly independent so there exists a dual basis for
V ∗∗ and since V ∗∗ is naturally isomorphic to V this corresponds to a basis for
V .

Alternatively, we can construct the basis with this dual. After solving some
systems of a equations or using Lagrange interpolation, let

p0(x) = 1− 3

2
x+

1

2
x2

p1(x) = 2x− x2

p2(x) = −1

2
x+

1

2
x2.

It remains to check that {p0, p1, p2} forms a basis and then verify that {f0, f1, f2}
is its dual basis. Since 1 = p0 + p1 − p2, x = p1 + 2p2, and x2 = p1 + 4p2, we see
that {p0, p1, p2} forms a basis for V and we easily verify fi(pj) = δij.
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