
Math 115B - Winter 2020

Midterm Exam

Full Name:

UID:

Instructions:

• Read each problem carefully.

• Show all work clearly and circle or box your final answer where
appropriate.

• Justify your answers. A correct final answer without valid reasoning
will not receive credit.

• All work including proofs should be well organized and clearly
written using complete sentences.

• You may use the provided scratch paper, however this work will
not be graded unless very clearly indicated there and in the exam.

• Calculators are not allowed but you may have a 3× 5 inch notecard.

Page Points Score

1 10

2 10

3 10

4 10

Total: 40
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1. (10 points) True or False: Prove or disprove the following statements.

Let V be a finite-dimensional inner product space and let T : V → V be a linear operator.

(a) Suppose F = C. If T is self-adjoint then 〈Tv, v〉 is real for all v ∈ V .

(b) Suppose F = R. If T is normal then T is diagonalizable.
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2. (10 points) Let V be a finite-dimensional inner product space over the field F = R.

(a) Let T : V → V be a self-adjoint linear operator whose only eigenvalues are zero and
one. Show Tm = T for all m ≥ 1.

(b) Suppose V = W⊕W⊥ for some subspace W ⊆ V . Let T : V → V be the orthogonal
projection onto W along W⊥. Show that T is self-adjoint.
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3. (10 points) Let T be an operator on a two-dimensional vector space V over a field F.
Recall, we say V is a T -cyclic subspace of itself if there exists a nonzero vector v ∈ V
such that the T -cyclic subspace generated by v is all of V . Prove that either V is a
T -cyclic subspace of itself or T is a scalar multiple of the identity.
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4. (10 points) True or False: Prove or disprove the following statements.

(a) If a matrix A is unitarily equivalent to a diagonal matrix then A4 is also unitarily
equivalent to a diagonal matrix.

(b) Let V be a finite-dimensional complex vector space and let T be a linear operator
whose only eigenvalue is zero. Then T is nilpotent.
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