All problems are to be written up clearly and thoroughly, using complete sentences. This assignment is due in discussion at 2 pm on Tuesday, February 4th.

For all T/F problems on the homework, provide a brief justification for your answer. That may be citing an appropriate theorem or providing a counterexample.

1. From the book:

Section 6.3 problems 9, 12.
Section 6.4 problems 1, 7, 14.
Section 6.5 problems 1, 5.
An isometry is a linear operator $T: V \rightarrow V$ on an inner product space such that $\langle T(x), T(y)\rangle=\langle x, y\rangle$ for all pairs $x, y \in V$.
2. Let V be a finite-dimensional inner product space over $\mathbb{F}=\mathbb{R}$ or \mathbb{C}.
(a) Fix $y \in V$ and suppose $\langle x, y\rangle=0$ for all $x \in V$. Show that $y=0$.
(b) Let $T: V \rightarrow V$ be an isometry. Prove that T is an isomorphism.
(c) Find all isometries $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that have $\operatorname{det} T=1$.

