Solve the following problems. This assignment will not be collected.

1. From the book:

Section 7.3 problems 8, 9, 12, 14

Section 6.8 problems 5 a, b

- 2. Show that every matrix $A \in M_{n \times n}(\mathbb{R})$ can be written as the sum of a symmetric matrix and a skew-symmetric matrix (i.e. $M^t = -M$) in a unique way.
- 3. Let \langle , \rangle be a bilinear form on finite-dimensional vector space over $\mathbb{F} = \mathbb{R}$. Show there is a symmetric bilinear form (,) and a skew-symmetric bilinear form [,] so that $\langle , \rangle = (,) + [,]$.
- 4. Given a finite-dimensional vector space V over a field \mathbb{F} and its dual $V^* = \text{Hom}(V, \mathbb{F})$, consider the function

 $ev\colon V^*\times V\to \mathbb{F}$

given by $(f, v) \mapsto f(v)$. Show that ev is a bilinear map and thus induces a linear map

$$\overline{ev}\colon V^*\otimes V\to \mathbb{F}.$$

Furthermore, suppose $\beta = \{v_1, \ldots, v_n\}$ is a basis for V and $\beta^* = \{w_1, \ldots, w_n\}$ its dual basis. Find the values of $\overline{ev}(w_i \otimes v_j)$ for all $1 \leq i, j \leq n$.