All problems are to be written up clearly and thoroughly, using complete sentences. This assignment is due in discussion at 2pm on Thursday, June 6th.

For all T/F problems on the homework, provide a brief justification for your answer. That may be citing an appropriate theorem or providing a counterexample.

- 1. Section 6.2 problems 1, 2 a, b, g, i, k, 5, 6, 7, 8, 9, 13, 17, 19
- 2. Section 6.3 problems 1, 2 a, b, 3a, b, c, 4, 6, 7, 8, 9, 12, 14, 15

An isometry is a linear operator $T: V \to V$ such that $\langle T(x), T(y) \rangle = \langle x, y \rangle$ for all pairs $x, y \in V$.

3. Let V be a finite-dimensional inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .

(a) Fix $y \in V$ and suppose $\langle x, y \rangle = 0$ for all $x \in V$. Show that y = 0.

- (b) Let $T: V \to V$ be an isometry. Prove that T is an isomorphism.
- (c) Find all isometries $T : \mathbb{R}^2 \to \mathbb{R}^2$ that have det T = 1.