All problems are to be written up clearly and thoroughly, using complete sentences. This assignment is due in discussion at 2 pm on Thursday, May 30th.

For all T/F problems on the homework, provide a brief justification for your answer. That may be citing an appropriate theorem or providing a counterexample.

1. Section 5.2 problems $7,8,9,10,11,12,13,18,19,20$
2. Section 6.1 problems $1,2,3,4,8,9,10,12,16,17,18,23,29$

For a collection U_{i} for $1 \leq i \leq k$ of subspaces of a vector space V, we call V the direct sum of the subspaces and write

$$
V=U_{1} \oplus U_{2} \oplus \cdots \oplus U_{k}
$$

if $U_{i} \cap \sum_{i \neq j} U_{j}=\{0\}$ and $V=U_{1}+U_{2}+\cdots U_{k}$. This second condition means that every vector $v \in V$ can be written as a sum $v=\sum_{i=1}^{k} u_{i}$ for some $u_{i} \in U_{i}$.
3. Suppose V is a finite-dimensional vector space and $T: V \rightarrow V$ is diagonalizable. If T has eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ show that V decomposes as the direct sum of its eigenspaces, i.e. show that

$$
V=E_{\lambda_{1}} \oplus E_{\lambda_{2}} \oplus \cdots \oplus E_{\lambda_{k}} .
$$

