All problems are to be written up clearly and thoroughly, using complete sentences. This assignment is due in discussion at 2 pm on Thursday, May 23rd.

For all T/F problems on the homework, provide a brief justification for your answer. That may be citing an appropriate theorem or providing a counterexample.

1. Section 5.1 problems 4 a, d, e, h, 6, 8, 9, 10, 11, 14, 15, 17
2. Section 5.2 problems 1, 2, 3
3. Compute the number of invertible matrices A in $M_{n \times n}\left(\mathbb{F}_{p}\right)$.
4. A matrix $A \in M_{n \times n}(\mathbb{F})$ is called nilpotent if there exists a k such that $A^{k}=0$. Show that if A is nilpotent then $I_{n}-A$ is invertible. (Hint: think about the power series of $\left.(1-x)^{-1}\right)$.
