All problems are to be written up clearly and thoroughly, using complete sentences. This assignment is due in discussion at 2 pm on Thursday, May 16th.

For all T/F problems on the homework, provide a brief justification for your answer. That may be citing an appropriate theorem or providing a counterexample.

1. Section 2.5 problems 1, 2, 3 a, c, e, 4, 5, 6, 7, 10
2. Section 4.4 problems $1,5,6$
3. Section 5.1 problems $1,2 \mathrm{a}, \mathrm{b}, \mathrm{c}, 3$
4. A differential operator on $\mathbb{R}_{n}[x]$ (the vector space of polynomials with degree less than or equal to n) is a linear combination of expressions of the form $x^{a} \frac{d^{b}}{d x^{b}}$ where $a-b \leq 0$ (otherwise the degree would potentially increase). We can consider a differential operator as a linear operator $\mathbb{R}_{n}[x] \rightarrow \mathbb{R}_{n}[x]$.
(a) Let $D: \mathbb{R}_{2}[x] \rightarrow \mathbb{R}_{2}[x]$ be the differential operator given by $2-4 \frac{d}{d x}+2 x^{2} \frac{d^{2}}{d x^{2}}$. Find the matrix of D relative to the basis $\left\{x^{2},(x-1)^{2},(x+1)^{2}\right\}$.
(b) Suppose $E: \mathbb{R}_{2}[x] \rightarrow \mathbb{R}_{2}[x]$ is a differential operator and that the matrix of E relative to the basis $\left\{1, x, x^{2}\right\}$ is the following matrix.

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right)
$$

What is E as a differential operator?

