All problems are to be written up clearly and thoroughly, using complete sentences. This assignment is due in discussion at 2 pm on Thursday, May 9th.

For all T/F problems on the homework, provide a brief justification for your answer. That may be citing an appropriate theorem or providing a counterexample.

1. Section 2.3 problems $1,3,4,9,11,12,16,17$
2. Section 2.4 problems 1, 2a, c, e, 3, 7, 14, 15, 17, 24
3. Let V be a finite-dimensional vector space and let W be a subspace. Show that V and $W \times V / W$ are isomorphic by constructing an explicit isomorphism (rather than simply computing the dimensions).

For HW 5 problem 3, I probably should have said that the product of vector spaces is just the underlying Cartesian product of sets with pointwise addition and scalar multiplication. If I take vector spaces over the same field U and V, then $U x V$ has elements of the form (u, v) where u is in U and v is in V. We add coordinatewise so $(u, v)+\left(u^{\prime}, v^{\prime}\right)=\left(u+u^{\prime}\right.$, $\left.\mathrm{v}+\mathrm{v}^{\prime}\right)$ and scalar multiply $\mathrm{a}(\mathrm{u}, \mathrm{v})=(\mathrm{au}, \mathrm{av})$. For number 3 in the homework, we read W $x V / W$ as $W x(V / W)$ so elements of $W x V / W$ are of the form $(w, v+W)$, since elements of V / W are cosets of the form $\mathrm{v}+\mathrm{W}$.
4. Let V be a finite-dimensional vector space over \mathbb{F} and let $V^{*}=\operatorname{Hom}(V, \mathbb{F})$ be its dual vector space. For W a subset of V, we define the annihilator of W to be the set

$$
W^{0}=\left\{f \in V^{*} \mid f(x)=0 \text { for all } x \in W\right\} .
$$

(a) Show that W^{0} is a subspace of V^{*}.
(b) For subspaces $W_{1}, W_{2} \subseteq V$, show that $\left(W_{1}+W_{2}\right)^{0}=W_{1}^{0} \cap W_{2}^{0}$.

