Solve the following problems. This assignment will not be collected.

1. Section 6.4 problems $1,2 \mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{f}, 4,6,7,9,11,12,14,17,20$

A linear operator $T: V \rightarrow V$ such that $\|T(v)\|=\|v\|$ for all $v \in V$ is called a unitary operator if $\mathbb{F}=\mathbb{C}$ and an orthogonal operator if $\mathbb{F}=\mathbb{R}$.
2. Let V be a finite-dimensional inner product space over $\mathbb{F}=\mathbb{C}$. Show that the following are equivalent.
(a) T is a unitary
(b) $T T^{*}=T^{*} T=I$.
(c) T is an isometry.

