
Math 115A - Spring 2019

Practice Final Exam - Solutions

Full Name:

UID:

Instructions:

• Read each problem carefully.

• Show all work clearly and circle or box your final answer where
appropriate.

• Justify your answers. A correct final answer without valid reasoning
will not receive credit.

• All work including proofs should be well organized and clearly
written using complete sentences.

• You may use the provided scratch paper, however this work will
not be graded unless very clearly indicated there and in the exam.

• Calculators are not allowed but you may have a 3× 5 inch notecard.

Page Points Score Page Points Score

1 15 7 15

2 10 8 10

3 15 9 10

4 15

6 10 Total: 100

Bonus
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1. (15 points) Consider the vector space V = P2(R) with standard basis

β = {1, x, x2}
and the linear maps

T : V → V, T (f) = f(1) + f(−1)x+ f(0)x2,

S : V → V, S(ax2 + bx+ c) = cx2 + bx+ a.

(a) Find [T ]ββ and [S]ββ. Then show that

[TS]ββ =

1 1 1
1 −1 1
0 0 1

 .

(b) Compute [(TS)−1]ββ.

(c) What is (TS)−1(x2 + x+ 1)?

Solution:

(a) We compute T (1) = 1 + x+ x2, T (x) = 1− x, and T (x2) = 1 + x. So

[T ]ββ =

1 1 1
1 −1 1
1 0 0


and similarly,

[S]ββ =

0 0 1
0 1 0
1 0 0

 .

Now multiplying the matrices

[TS]ββ = [T ]ββ[S]ββ =

1 1 1
1 −1 1
0 0 1

 .

(b) We compute the inverse of [TS]ββ in the usual way

[(TS)−1]ββ =

1
2

1
2
−1

1
2
−1

2
0

0 0 1

 .

Then to find (TS)−1(x2 + x+ 1) we compute

[(TS)−1(x2 + x+ 1)]β = [(TS)−1]ββ[x2 + x+ 1]β

=

1
2

1
2
−1

1
2
−1

2
0

0 0 1

1
1
1

 =

0
0
1

 .

So (TS)−1(x2 + x+ 1) = x2.
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2. (10 points) Consider the matrix

A =

0 1 −2
1 0 −2
0 0 −1


in M3×3(R).

(a) Compute the characteristic polynomial of A. Find all the eigenvalues of A and their
algebraic multiplicities.

(b) Is A diagonalizable? If so, find a basis β of eigenvectors for A and write [TA]ββ.

Solution:

(a) We compute

pA(t) = det(A−tI) = det

−t 1 −2
1 −t −2
0 0 −1− t

 = (t2−1)(−1−t) = −(t+1)2(t−1).

The roots of the characteristic polynomial are λ1 = 1 and λ2 = −1 with algebraic
multiplicities 1 and 2 respectively.

(b) We compute the geometric multiplicities of the eigenvalues, i.e. the dimensions
of the eigenspaces. Solving0 1 −2

1 0 −2
0 0 −1

xy
z

 =

xy
z


we get the system of equations {y − 2z = x, x − 2z = y,−z = z}. We find a
basis for E1 is given by {(1, 1, 0)}. Similarly, for eigenvectors with eigenevalue
−1 we get the system of equations {y − 2z = −x, x − 2z = −y,−z = −z}. So
a basis for E−1 is given by {(2, 0, 1), (0, 2, 1)}.
Thus the geometric multiplicities agree with the algebraic multiplicities and A is
diagonalizable. Let β = {(1, 1, 0), (2, 0, 1), (0, 2, 1)} be our basis of eigenvectors.
Then we have

[TA]ββ =

1 0 0
0 −1 0
0 0 −1

 .
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3. (15 points) Consider the vector space V = R4 with the standard inner product. Let S
be

S = {w1 = (1, 0, 1, 0), w2 = (1, 1, 1, 1), w3 = (2, 2, 0, 2)}.
(a) Apply the Gram-Schmidt orthogonalization algorithm to S to compute an orthogonal

basis β′ of span(S). You may use that S is linearly independent.

(b) Use your result from part (a) to compute an orthonormal basis β of span(S).

(c) Let x = (1, 2, 3, 2) ∈ span(S). Compute the coordinate vector [x]β.

Solution:

(a) In the Gram-Schmidt algorithm we set

v1 = w1 and vk = wk −
k−1∑
j=1

〈wk, vj〉
||vj||2

vj.

So we compute

v1 = w1 = (1, 0, 1, 0)

v2 = w2 −
〈w2, v1〉
〈v1, v1〉

v1 = (1, 1, 1, 1)− 2

2
(1, 0, 1, 0) = (0, 1, 0, 1)

v3 = w3 −
〈w3, v1〉
〈v1, v1〉

v1 −
〈w3, v2〉
〈v2, v2〉

v2

= (2, 2, 0, 2)− 2

2
(1, 0, 1, 0)− 4

2
(0, 1, 0, 1)

= (1, 0,−1, 0).

So an orthogonal basis β′ for span(S) is given by

β′ = {v1 = (1, 0, 1, 0), v2 = (0, 1, 0, 1), v3 = (1, 0,−1, 0)}.

(b) Now an orthonormal basis β for span(S) is given by

β =

{
u1 =

(
1√
2
, 0,

1√
2
, 0

)
, u2 =

(
0,

1√
2
, 0,

1√
2

)
, u3 =

(
1√
2
, 0,− 1√

2
, 0

)}
.

(c) To find [x]β we use that x =
3∑
i=1

〈x, ui〉ui. So we compute

x =
3∑
i=1

〈x, ui〉ui = 2
√

2u1 + 2
√

2u2 −
√

2u3.

Hence [x]β =
(
2
√

2, 2
√

2,−
√

2
)
.
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4. (15 points) Let V be a finite-dimensional vector space over R with an inner product so
that 〈x, y〉 ∈ R for x, y ∈ V .

(a) Let λ ∈ R with λ > 0. Show that

〈x, y〉′ = λ 〈x, y〉

for x, y ∈ V defines an inner product on V .

(b) The inner product on V defines an induced norm. Show that

〈x, y〉 =
1

2

(
||x+ y||2 − ||x||2 − ||y||2

)
for all x, y ∈ V . Hence the inner product can be recovered from the norm.

(c) Let β = {v1, . . . , vn} be a basis for V . The Gram matrix G ∈Mn×n(R) of the inner
product 〈−,−〉 with respect to the basis β is defined by

Gij = 〈vi, vj〉 .

Show that G is invertible.

Solution:

(a) Proof. We need to check the four properties of an inner product. Let u, v, w ∈ V
and c ∈ R. The properties all follow from the fact that 〈−,−〉 is an inner
product. For linearity in the first coordinate,

〈u+ v, w〉′ = λ 〈u+ v, w〉 = λ 〈u,w〉+ λ 〈v, w〉 = 〈u,w〉′ + 〈v, w〉′ .

Similarly,
〈cv, w〉′ = λ 〈cv, w〉 = cλ 〈v, w〉 = c 〈v, w〉′

and
〈v, w〉′ = λ 〈v, w〉 = λ 〈w, v〉 = λ 〈w, v〉 = 〈w, v〉′ .

Finally we check that 〈v, v〉′ > 0 if v 6= 0 and indeed

〈v, v〉′ = λ 〈v, v〉 > 0

because λ > 0.

(b) Proof. The norm of a vector is defined by ||x|| =
√
〈x, x〉. We begin by

computing ||x + y||2 = 〈x+ y, x+ y〉. Then using the properties of an inner
product we have

||x+ y||2 = 〈x+ y, x+ y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ||x||2 + 〈x, y〉+ 〈x, y〉+ ||y||2

= ||x||2 + 2 〈x, y〉+ ||y||2
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because V is a vector space over R. Now solving for 〈x, y〉 we see that

〈x, y〉 =
1

2

(
||x+ y||2 − ||x||2 − ||y||2

)
as desired.

(c) Proof. The matrix G defines a linear operator TG : V → V . We will show the
kernel of this linear operator is {0}, which implies TG is one-to-one. Then by
the rank-nullity theorem rank(TG) = n = dimV so TG is also surjective and
hence an isomorphism.

Let x ∈ kerTG. Then 0 = TG(x) = G[x]β. Expanding x in terms of the basis β,
we can write x = λ1v1 + · · ·+ λnvn for some scalars λi ∈ R for 1 ≤ i ≤ n. Then
[x]β = (λ1, . . . , λn) so

0 = G[x]β =

〈v1, v1〉λ1 + · · ·+ 〈v1, vn〉λn
...

〈vn, v1〉λ1 + · · ·+ 〈vn, vn〉λn

 =

〈v1, x〉...
〈vn, x〉

 .

This implies x ∈ V ⊥. But V ⊥ = {0} so x = 0 and we are done.
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5. (10 points) Let V be a finite-dimensional vector space over a field F and let S, T : V → V
be two linear operators.

(a) Show that rank(ST ) ≤ min{rank(S), rank(T )}.
(b) Suppose T 2 = T . Show that ker(T ) ∩ im(T ) = {0}.

Solution:

(a) Proof. Let z ∈ im(ST ). Then z = ST (v) for some v ∈ V and if w = T (v) then
z = S(w). So im(ST ) ⊆ im(S) and hence rank(ST ) ≤ rank(S).

It remains to show that we also have rank(ST ) ≤ rank(T ). Suppose x ∈ ker(T ).
Then ST (x) = S(T (x)) = S(0) = 0 so ker(T ) ⊆ ker(ST ). This shows that
null(T ) ≤ null(ST ). If dimV = n then by rank-nullity

n = rank(ST ) + null(ST ).

But then
null(T ) ≤ null(ST ) = n− rank(ST ).

Applying rank-nullity for T we have

n− rank(T ) ≤ n− rank(ST )

and so rank(ST ) ≤ rank(T ) and we are done.

(b) Proof. Notice that 0 ∈ ker(T ) and 0 ∈ im(T ) since both are subspaces of
V . So we need to show 0 is the only element of ker(T ) ∩ im(T ). Assume
for contradiction there exists 0 6= v ∈ ker(T )∩ im(T ). Then T (v) = 0 and there
exists w ∈ V such that T (w) = v. But since T 2 = T we have

v = T (w) = T 2(w) = T (T (w)) = T (v) = 0,

a contradiction. Thus ker(T ) ∩ im(T ) = {0}.
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6. (15 points) True or False: Prove or disprove the following statements.

(a) An upper-triangular matrix is invertible if and only if all of its diagonal entries are
nonzero.

(b) If T : V → V is an invertible linear operator then T is diagonalizable.

(c) If T : V → V is a diagonalizable linear operator then T is invertible.

Solution:

(a) True.

Proof. The determinant of an upper-triangular matrix is the product of the
diagonal entries. This product will be nonzero precisely when all of the diagonal
entries are nonzero.

(b) False. Let V = R2 and consider the matrix

A =

(
0 1
−1 0

)
.

The determinant of A is 1 6= 0 so A is invertible. The characteristic polynomial
of A is

pA(t) = det(A− tI) = det

(
−t 1
−1 −t

)
= t2 + 1,

which has complex roots i,−i. The characteristic polynomial does not split over
R and so A is not diagonalizable.

(c) False. Again consider V = R2 and let

A =

(
1 0
0 0

)
.

Clearly A is already diagonal but detA = 0 so A is not invertible.
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7. (10 points) Consider C as a vector space over R and define 〈−,−〉 : C× C→ R via

〈w, z〉 =
1

2
(wz + zw)

for all w, z ∈ C.

(a) Show that 〈−,−〉 defined above is an inner product on C.

(b) Let T : C→ C be defined by T (z) = z. Show that T is an isometry.

Solution:

(a) Proof. We check the four properties of an inner product hold. Let v, w, z ∈ C
and λ ∈ R. Then

〈v + w, z〉 =
1

2

(
(v + w)z + z(v + w)

)
=

1

2
(vz + zv + wz + zw) = 〈v, z〉+〈w, z〉

so linearity in the first coordinate holds. Since λ ∈ R we also have

〈λw, z〉 =
1

2
(λwz + zλw) = λ

1

2
(wz + zw) = λ 〈w, z〉 .

We also need to check that conjugating the inner product behaves properly, and
indeed,

w, z =
1

2
(wz + zw) =

1

2
(wz + wz) = 〈z, w〉 .

Finally, if z 6= 0 then

〈z, z〉 =
1

2
(zz + zz) =

1

2

(
|z|2 + |z|2

)
= |z|2 > 0.

Thus this does define an inner product on C as a real vector space.

(b) Proof. We need to show that 〈Tw, Tz〉 = 〈w, z〉 for all w, z ∈ C. This follows
easily since

〈Tw, Tz〉 =
1

2

(
TwTz + TzTw

)
=

1

2
(wz + zw) = 〈w, z〉 .

Thus T is an isometry.
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8. (10 points) True or False: Prove or disprove the following statements.

Let V be a finite-dimensional inner product space over F = C. Let T : V → V be a a
linear operator and T ∗ its adjoint.

(a) The linear operator S = T + T ∗ is diagonalizable.

(b) If T is normal then ||Tv|| = ||T ∗v|| for all v ∈ V .

Solution:

(a) True.

Proof. Since S = T + T ∗ and T ∗∗ = T , we see that S∗ = T ∗ + T = S. So
S∗S = S2 = SS∗ and S is both self-adjoint and normal. Then by the spectral
theorem for normal operators, since V is a complex vector space, there exists
an orthonormal basis of eigenvectors for S. Hence S is diagonalizable.

(b) True.

Proof. Since T is normal T ∗T = TT ∗. Then for any v ∈ V we compute

||Tv||2 = 〈Tv, Tv〉
= 〈v, T ∗Tv〉
= 〈v, TT ∗v〉
= 〈T ∗v, T ∗v〉
= ||T ∗v||2.

So indeed ||Tv|| = ||T ∗v||.
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