
Math 115A - Spring 2019

Practice Final Exam

Full Name:

UID:

Instructions:

• Read each problem carefully.

• Show all work clearly and circle or box your final answer where
appropriate.

• Justify your answers. A correct final answer without valid reasoning
will not receive credit.

• All work including proofs should be well organized and clearly
written using complete sentences.

• You may use the provided scratch paper, however this work will
not be graded unless very clearly indicated there and in the exam.

• Calculators are not allowed but you may have a 3× 5 inch notecard.

Page Points Score Page Points Score

1 15 6 15

2 10 7 10

3 15 8 10

4 15

5 10 Total: 100

Bonus
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1. (15 points) Consider the vector space V = P2(R) with standard basis

β = {1, x, x2}

and the linear maps

T : V → V, T (f) = f(1) + f(−1)x+ f(0)x2,

S : V → V, S(ax2 + bx+ c) = cx2 + bx+ a.

(a) Find [T ]ββ and [S]ββ. Then show that

[TS]ββ =

1 1 1
1 −1 1
0 0 1

 .

(b) Compute [(TS)−1]ββ.

(c) What is (TS)−1(x2 + x+ 1)?
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2. (10 points) Consider the matrix

A =

0 1 −2
1 0 −2
0 0 −1


in M3×3(R).

(a) Compute the characteristic polynomial of A. Find all the eigenvalues of A and their
algebraic multiplicities.

(b) Is A diagonalizable? If so, find a basis β of eigenvectors for A and write [TA]ββ.
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3. (15 points) Consider the vector space V = R4 with the standard inner product. Let S
be

S = {w1 = (1, 0, 1, 0), w2 = (1, 1, 1, 1), w3 = (2, 2, 0, 2)}.

(a) Apply the Gram-Schmidt orthogonalization algorithm to S to compute an orthogonal
basis β′ of span(S). You may use that S is linearly independent.

(b) Use your result from part (a) to compute an orthonormal basis β of span(S).

(c) Let x = (1, 2, 3, 2) ∈ span(S). Compute the coordinate vector [x]β.
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4. (15 points) Let V be a finite-dimensional vector space over R with an inner product so
that 〈x, y〉 ∈ R for x, y ∈ V .

(a) Let λ ∈ R with λ > 0. Show that

〈x, y〉′ = λ 〈x, y〉

for x, y ∈ V defines an inner product on V .

(b) The inner product on V defines an induced norm. Show that

〈x, y〉 =
1

2

(
||x+ y||2 − ||x||2 − ||y||2

)
for all x, y ∈ V . Hence the inner product can be recovered from the norm.

(c) Let β = {v1, . . . , vn} be a basis for V . The Gram matrix G ∈Mn×n(R) of the inner
product 〈−,−〉 with respect to the basis β is defined by

Gij = 〈vi, vj〉 .

Show that G is invertible.
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5. (10 points) Let V be a finite-dimensional vector space over a field F and let S, T : V → V
be two linear operators.

(a) Show that rank(ST ) ≤ min{rank(S), rank(T )}.
(b) Suppose T 2 = T . Show that ker(T ) ∩ im(T ) = {0}.
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6. (15 points) True or False: Prove or disprove the following statements.

(a) An upper-triangular matrix is invertible if and only if all of its diagonal entries are
nonzero.

(b) If T : V → V is an invertible linear operator then T is diagonalizable.

(c) If T : V → V is a diagonalizable linear operator then T is invertible.
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7. (10 points) Consider C as a vector space over R and define 〈−,−〉 : C× C→ R via

〈w, z〉 =
1

2
(wz + zw)

for all w, z ∈ C.

(a) Show that 〈−,−〉 defined above is an inner product on C.

(b) Let T : C→ C be defined by T (z) = z. Show that T is an isometry.
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8. (10 points) True or False: Prove or disprove the following statements.

Let V be a finite-dimensional inner product space over F = C. Let T : V → V be a a
linear operator and T ∗ its adjoint.

(a) The linear operator S = T + T ∗ is diagonalizable.

(b) If T is normal then ||Tv|| = ||T ∗v|| for all v ∈ V .
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