
Math 115A - Spring 2019

Practice Exam 2 - Solutions

Full Name:

UID:

Instructions:

• Read each problem carefully.

• Show all work clearly and circle or box your final answer where
appropriate.

• Justify your answers. A correct final answer without valid reasoning
will not receive credit.

• All work including proofs should be well organized and clearly
written using complete sentences.

• You may use the provided scratch paper, however this work will
not be graded unless very clearly indicated there and in the exam.

• Calculators are not allowed but you may have a 3× 5 inch notecard.

Page Points Score

1 10

2 10

3 15

4 15

Total: 50
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1. (10 points) True or False: Prove or disprove the following statements.

(a) If T : V → W is a linear map between two n-dimensional vector spaces then T is
onto if and only if T is one-to-one.

(b) If T : V → W is a linear map between two finite-dimensional vector spaces then T
is an isomorphism if and only if T maps any basis β for V to a basis T (β) for W .

Solution:

(a) True.

Proof. (=⇒) If T is onto then imT = W so rankT = dimW = n. By the
dimension theorem (or rank-nullity),

n = dimV = rankT + nullT.

Then we calculate

dim(kerT ) = nullT = n− rankT = n− n = 0

and so it must be that kerT = {0}. Thus T is one-to-one.

(⇐=) If T is one-to-one, then kerT = {0} and so nullT = 0. Again by the
dimension theorem

dim(imT ) = rankT = dimV − nullT = n− 0 = n = dimW

so T is onto.

(b) True.

Proof. (=⇒) Suppose T is an isomorphism. If β = {v1, . . . , vn} is a basis for V
then imT = spanT (β) = span{T (v1), . . . , T (vn)}. This follows because clearly
T (β) ⊆ imT and so spanT (β) ⊆ imT . Furthermore, if w ∈ imT then there
exists v ∈ V such that T (v) = w. Writing v as a linear combination of the
vectors in β and applying the linear map T gives w as a linear combination of
the vectors in T (β), so imT ⊆ spanT (β).

Now since T is an isomorphism, T is onto and imT = W . This means T (β)
spans W . But by the classification of finite-dimensional vector spaces V ∼= W
if and only if dimV = dimW . Since β is a basis for V , it must be that
n = dimV = dimW . Because T (β) = {T (v1), . . . , T (vn)} spans W and contains
n vectors, it must be a basis for W .

(⇐=) Now suppose T maps any basis β for V to a basis T (β) for W . Then
dimV = dimW since β and T (β) have the same number of elements. We see
that T is onto since we showed above imT = spanT (β) and T (β) is a basis
for W . Finally, by part (a) we know that T is also one-to-one and hence an
isomorphism.
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2. (10 points) Let T : R2 → R2 be the projection onto the x-axis along the line y = 2x.

(a) Give a basis for R2 consisting of eigenvectors for T and find their corresponding
eigenvalues.

(b) Find the matrix T in the standard basis for R2.

Solution:

(a) Since T is projection onto the x-axis, any vector of the form (x, 0) is fixed by
T , i.e. T (x, 0) = (x, 0). So in particular (1, 0) is an eigenvector with eigenvalue
λ = 1. We are projecting along the line y = 2x, so any vector along this line
is sent to zero. In particular T (1, 2) = 0(1, 2) so (1, 2) is an eigenvector with
eigenvalue λ = 0. Since (1, 0) and (2, 1) are linearly independent, we can take as

a basis for R2 the eigenvectors {(1, 0), (1, 2)} . (Note: we can check directly that

the two vectors are linearly independent, but we have also shown in class that
eigenvectors corresponding to distinct eigenvalues are linearly independent).

(b) Let β be the standard basis for R2 given by {e1, e2}. From part (a), we can
compute that T represented by a matrix in the basis β′ is diagonal and so

[T ]β
′

β′ =

(
1 0
0 0

)
.

Now we find the change of basis matrix Q = [I]β
′

β since then

[T ]ββ = Q−1[T ]β
′

β′Q.

In this instance, it is easier to compute Q−1 = [I]ββ′ as it has columns given by
the vectors in β′ so

Q−1 = [I]ββ′ =

(
1 1
0 2

)
.

Then we compute

Q =

(
1 −1

2

0 1
2

)
.

So finally we have

[T ]ββ = Q−1[T ]β
′

β′Q =

(
1 1
0 2

)(
1 0
0 0

)(
1 −1

2

0 1
2

)
=

(
1 −1

2

0 0

)
.

Thus [T ]ββ =

(
1 −1

2

0 0

)
.
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3. (15 points) Let β = {1, x, x2} and β′ = {1 + x+ x2, x+ x2, x2} be bases of P2(R).

(a) Find the change of coordinate matrix from β′ to β.

(b) Find the characteristic polynomial for the matrix found in part (a).

(c) Find the change of coordinate matrix from β to β′.

Solution:

(a) We compute the change of basis matrix [I]ββ′ as

[I]ββ′ =

1 0 0
1 1 0
1 1 1

 .

(b) This is not a very well posed question as we should only find the characteristic
polynomial for a matrix of the form [T ]ββ. However, we can call the matrix we
found above A and compute the charatristic polynomial as pA(t) = det (A− tI).
In that case we have

pA(t) = det (A− tI) = det

1− t 0 0
1 1− t 0
1 1 1− t

 = (1− t)3.

So pA(t) = (1− t)3 .

(c) To find the change of basis matrix [I]β
′

β , we can either write each element of the
standard basis β in terms of β′ or find the inverse of the matrix in part (a). In
either case, we should have

[I]β
′

β =

 1 0 0
−1 1 0
0 −1 1

 .
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4. (15 points) Let V = P3(R) and W = M2×2(R). Let

β = {1, x, x2, x3}

γ =

{
w1 =

(
1 0
0 0

)
, w2 =

(
0 1
0 0

)
, w3 =

(
0 0
1 0

)
, w4 =

(
0 0
0 1

)}
be the standard bases. Consider the linear map T : V → W defined by

T (ax3 + bx2 + cx+ d) =

(
a+ b c+ d
a+ c b+ c

)
.

(a) Determine M =
[
T
]γ
β
.

(b) Prove that T is an isomorphism.

(c) Prove that V and W are isomorphic without using T .

Solution:

(a) We need to express T (1), T (x), T (x2), T (x3) in the γ basis. So we compute

T (1) =

(
0 1
0 0

)
= w2

T (x) =

(
0 1
1 1

)
= w2 + w3 + w4

T (x2) =

(
1 0
0 1

)
= w1 + w4

T (x3) =

(
1 0
1 0

)
= w1 + w3.

Collecting up the coefficients we have

[T ]γβ =


0 0 1 1
1 1 0 0
0 1 0 1
0 1 1 0

 .

(b) Proof. We know that T is an isomorphism if and only if T is invertible. But T
is invertible if and only if every matrix representation of T is invertible. We can
compute that det[T ]γβ = −2 6= 0 so T is invertible.

Alternatively, T is a linear map between two four-dimensional vector spaces. If
T is one-to-one then T is an isomorphism. So we can compute the kernel

kerT =

{
(ax3 + bx2 + cx+ d)

∣∣∣∣ (a+ b c+ d
a+ c b+ c

)
= 0

}
.
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We get a system of equations 
a+ b = 0

c+ d = 0

a+ c = 0

b+ c = 0

where the first and third equations give b = c, but the last gives b = −c.
Since we are working over the field R, it must be that b = c = 0. But then
also a = d = 0. So kerT = {0} and T is indeed one-to-one. Thus T is an
isomorphism.

(c) Proof. Notice that V and W are both four-dimensional vector spaces. By the
classification of finite-dimensional vector spaces V ∼= W .
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