
Math 115A - Spring 2019

Exam 2

Full Name:

UID:

Instructions:

• Read each problem carefully.

• Show all work clearly and circle or box your final answer where
appropriate.

• Justify your answers. A correct final answer without valid reasoning
will not receive credit.

• All work including proofs should be well organized and clearly
written using complete sentences.

• You may use the provided scratch paper, however this work will
not be graded unless very clearly indicated there and in the exam.

• Calculators are not allowed but you may have a 3× 5 inch notecard.

Page Points Score

1 10

2 10

3 10

4 10

Total: 40
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1. (10 points) True or False: Prove or disprove the following statements.

(a) Let T : V → V be a linear operator on a finite-dimensional vector space over a field
F. Let v and w be two eigenvectors of T with eigenvalue λ ∈ F. Then any nonzero
linear combination of v and w is also an eigenvector of T .

(b) Let S, T : V → V be linear operators on a finite-dimensional vector space. Assume
that S and T commute, i.e. that ST = TS. If T is injective then S is injective.
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2. (10 points) Let T : R2 → R2 be the linear transformation given by reflection about the
line y = 2x.

(a) Give a basis for R2 consisting of eigenvectors for T and find their corresponding
eigenvalues.

(b) Is there a basis γ for R2 such that [T ]γγ is the following matrix?

[T ]γγ =

(
2 3
3 5

)
If so, find the basis γ. If not, justify why no such basis exists.
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3. (10 points) Let A,B ∈Mn×n(F) and let tr(A) =
∑n

i=1Aii be the trace of A.

(a) Show that if A and B are similar then tr(A) = tr(B).

(b) Show that if Ak = 0 for some k ≥ 1 then the determinant det(A) = 0.
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4. (10 points) Let V = M2×2(R) and W = P3(R). Let

β =

{
w1 =

(
1 0
0 0

)
, w2 =

(
0 1
0 0

)
, w3 =

(
0 0
1 0

)
, w4 =

(
0 0
0 1

)}
and

γ = {1, x, x2, x3}

be the standard bases. Consider the linear map T : V → W defined by

T

(
a b
c d

)
= (a− c)x3 + (a+ c− 2b+ 2d)x2 + 3(c+ d)x+ 2(c+ d).

(a) Find
[
T
]γ
β
.

(b) Prove that although V ∼= W , the map T is not an isomorphism. (Hint: The proof
that V ∼= W should be one line.)
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