Math 115A - Spring 2019 Practice Exam 1 - Solutions

Full Name:	

UID: _____

Instructions:

- Read each problem carefully.
- Show all work clearly and circle or box your final answer where appropriate.
- Justify your answers. A correct final answer without valid reasoning will not receive credit.
- All work including proofs should be well organized and clearly written using complete sentences.
- You may use the provided scratch paper, however this work will not be graded unless very clearly indicated there and in the exam.
- Calculators are not allowed but you may have a 3×5 inch notecard.

Page	Points	Score
1	10	
2	15	
3	10	
4	10	
Total:	45	

THIS PAGE LEFT INTENTIONALLY BLANK

You may use this page for scratch work. Work found on this page will not be graded unless clearly indicated here and in the exam.

THIS PAGE LEFT INTENTIONALLY BLANK

You may use this page for scratch work. Work found on this page will not be graded unless clearly indicated here and in the exam.

- 1. (10 points) True or False: Prove or disprove the following statements.
 - (a) If U_1, U_2 , and W are subspaces of a finite-dimensional vector space V such that $U_1 + W = U_2 + W$, then $U_1 = U_2$.
 - (b) Fix an $n \times n$ matrix B and let $W = \{A \in M_{n \times n}(\mathbb{F}) \mid AB = BA\}$. Then W is a subspace of $M_{n \times n}(\mathbb{F})$.

Solution:

(a) **False.**

Take $V = \mathbb{R}^2$ and let $U_1 = \text{span}\{(1,0)\}, U_2 = \text{span}\{(0,1)\}$ and $W = \text{span}\{(1,1)\}$. Then $U_1 + W = U_2 + W = \mathbb{R}^2$ but $U_1 \neq U_2$.

(b) **True.**

Proof. To show that W is a subspace we need to check that W is closed under addition and scalar multiplication, and that W contains the zero vector. Fix B and let M and N be matrices in W so that MB = BM and NB = BN. Then

$$(M+N)B = MB + NB = BM + BN = B(M+N)$$

so $M + N \in W$. Let $\lambda \in \mathbb{F}$. Then $\lambda M \in W$ since

$$(\lambda M)B = \lambda(MB) = \lambda(BM) = B(\lambda M).$$

Finally, in $M_{n \times n}(\mathbb{F})$ the zero vector is the zero matrix and 0B = 0 = B0 so $0 \in W$. Thus W is a subspace of $M_{n \times n}(\mathbb{F})$.

2. (15 points) True or False: Prove or disprove the following statements.

(a) The set $W = \{(a, b, c) \in \mathbb{R}^3 \mid a^2 + b^2 + c^2 = 0\}$ is a subspace of \mathbb{R}^3 .

(b) The set $W = \{(a, b, c) \in \mathbb{R}^3 \mid a + b + c = 0\}$ is a subspace of \mathbb{R}^3 .

(c) There exists a linear transformation $T : \mathbb{F}^5 \to \mathbb{F}^2$ with $\ker T = \{(a, b, c, d, e) \in \mathbb{F}^5 \mid a = b \text{ and } c = d = e\}.$

Solution:

(a) **True.**

Proof. Let $a, b, c \in \mathbb{R}$ with $a^2 + b^2 + c^2 = 0$. Since $a^2, b^2, c^2 \ge 0$, it must be that a = b = c = 0. So $W = \{0\}$, which is subspace.

(b) **True.**

Proof. In order to show W is a subspace we check that W is closed under addition and scalar multiplication, and contains the zero vector. Given two arbitrary elements of W, say (a, b, c) and $(\bar{a}, \bar{b}, \bar{c})$, so that a + b + c = 0 and $\bar{a} + \bar{b} + \bar{c} = 0$, we want to show their sum is in W. We compute

$$(a,b,c) + (\bar{a},\bar{b},\bar{c}) = (a+\bar{a},b+\bar{b},c+\bar{c}).$$

The sum is in W since

$$(a + \bar{a}) + (b + \bar{b}) + (c + \bar{c}) = (a + b + c) + (\bar{a} + \bar{b} + \bar{c}) = 0 + 0 = 0.$$

So W is closed under addition. Now for scalar multiplication, given $\lambda \in \mathbb{R}$ we need that $\lambda(a, b, c) \in W$. This follows because

$$\lambda(a, b, c) = (\lambda a, \lambda b, \lambda c)$$

and

$$\lambda a + \lambda b + \lambda c = \lambda (a + b + c) = \lambda 0 = 0.$$

Last, we check that $(0,0,0) \in W$, but of course 0 + 0 + 0 = 0. Thus W is a subspace of \mathbb{R}^3 .

(c) **False.**

By the Rank-Nullity Theorem, $\dim(\ker T) + \dim(\operatorname{im} T) = \dim \mathbb{F}^5 = 5$. But we see that $\dim(\ker T)$ has dimension 2 since $\{(1, 1, 0, 0, 0), (0, 0, 1, 1, 1)\}$ gives a basis for ker T. This implies that $\dim(\operatorname{im} T) = 3$. But $\operatorname{im} T$ is a subspace of \mathbb{F}^2 so $\dim(\operatorname{im} T) \leq 2$, a contradiction.

3. (10 points) True or False: Prove or disprove the following statements.

(a) Let
$$S = \{(1, -1, 0), (0, 1, -1), (1, 1, 1)\} \subseteq \mathbb{R}^3$$
. The list S is a basis for \mathbb{R}^3 .

(b) Let $B = \{(1, -1, 0), (0, 1, -1), (1, 1, 1)\} \subseteq (\mathbb{F}_2)^3$. The list B is a basis for $(\mathbb{F}_2)^3$.

Solution:

(a) **True.**

Proof. Since the dimension of \mathbb{R}^3 is 3 and S has 3 elements, it suffices to prove either that S is linearly independent or that span $S = \mathbb{R}^3$, because one will imply the other. We will prove that S is linearly independent. Consider a linear combination

$$a(1, -1, 0) + b(0, 1, -1) + c(1, 1, 1) = (a + c, -a + b + c, -b + c) = 0$$

with scalars $a, b, c \in \mathbb{R}$. This gives a system of linear equations

a + c = 0-a + b + c = 0-b + c = 0.

We will show that a = b = c = 0. Adding b to both sides of the last equation gives b = c. So the first two equations become

$$a + b = 0$$
$$-a + 2b = 0$$

Adding a to both sides of the second equation now gives a = 2b. But then the first equation becomes 3b = 0. Hence b = 0 and then also c = 0 and a = 0. Thus there are no nontrivial linear combinations of zero and S is linearly independent. Since \mathbb{R}^3 has dimension 3, this shows S is a basis for \mathbb{R}^3 .

(b) **True.**

Proof. We have seen that sometimes a basis for \mathbb{R}^3 is not a basis for $(\mathbb{F}_2)^3$. However, in this case the same argument as above holds (though we can now ignore the minus signs), because $3 = 1 \in \mathbb{F}_2$. In fact the argument could be shorter, because once we have a = 2b, we know a = 0 since $2 = 0 \in \mathbb{F}_2$. But then a = b = c = 0 and B is linearly independent. Since \mathbb{F}^3 has dimension 3 and B contains 3 linearly independent vectors, B also spans. Hence B is a basis for $(\mathbb{F}_2)^3$.

- 4. (10 points) True or False: Let W_1 and W_2 be subspaces of a vector space V over a field \mathbb{F} . Prove or disprove the following sets are subspaces of V.
 - (a) The intersection of W_1 and W_2 , given by

 $W_1 \cap W_2 = \{ v \in V \mid v \in W_1 \text{ and } v \in W_2 \}.$

(b) The difference of W_1 from W_2 , given by

$$W_2 - W_1 = \{ v \in V \mid v \in W_2 \text{ and } v \notin W_1 \}.$$

Solution:

(a) **True.**

Proof. We need to show that $W_1 \cap W_2$ is closed under addition and scalar multiplication, and that it contains $0 \in V$. All of these follow from the fact that W_1 and W_2 are subspaces of V.

Let $u, v \in W_1 \cap W_2$. Then $u, v \in W_1$ and also $u, v \in W_2$. Since W_1 is a subspace, it is closed under addition and $u+v \in W_1$. The same is true for W_2 , so $u+v \in W_2$ and hence $u+v \in W_1 \cap W_2$. Suppose $\lambda \in \mathbb{F}$. Again, $\lambda v \in W_1$ and $\lambda v \in W_2$ since W_1 and W_2 are closed under scalar multiplication. So $\lambda v \in W_1 \cap W_2$. Finally, $0 \in W_1$ and $0 \in W_2$ since all subspaces of V contain $0 \in V$, so $0 \in W_1 \cap W_2$. \Box

(b) False.

For example, take $V = W_2$ and $W_1 = \{0\}$. Then in particular, $0 \notin W_2 - W_1$ so $W_2 - W_1$ cannot be a subspace.