
Math 115A - Spring 2019

Practice Exam 1

Full Name:

UID:

Instructions:

• Read each problem carefully.

• Show all work clearly and circle or box your final answer where
appropriate.

• Justify your answers. A correct final answer without valid reasoning
will not receive credit.

• All work including proofs should be well organized and clearly
written using complete sentences.

• You may use the provided scratch paper, however this work will
not be graded unless very clearly indicated there and in the exam.

• Calculators are not allowed but you may have a 3× 5 inch notecard.

Page Points Score

1 10

2 15

3 10

4 10

Total: 45
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1. (10 points) True or False: Prove or disprove the following statements.

(a) If U1, U2, and W are subspaces of a finite-dimensional vector space V such that
U1 + W = U2 + W , then U1 = U2.

(b) Fix an n × n matrix B and let W = {A ∈ Mn×n(F) | AB = BA}. Then W is a
subspace of Mn×n(F).
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2. (15 points) True or False: Prove or disprove the following statements.

(a) The set W = {(a, b, c) ∈ R3 | a2 + b2 + c2 = 0} is a subspace of R3.

(b) The set W = {(a, b, c) ∈ R3 | a + b + c = 0} is a subspace of R3.

(c) There exists a linear transformation T : F5 → F2 with

kerT = {(a, b, c, d, e) ∈ F5 | a = b and c = d = e}.
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3. (10 points) True or False: Prove or disprove the following statements.

(a) Let S = {(1,−1, 0), (0, 1,−1), (1, 1, 1)} ⊆ R3. The list S is a basis for R3.

(b) Let B = {(1,−1, 0), (0, 1,−1), (1, 1, 1)} ⊆ (F2)
3. The list B is a basis for (F2)

3.
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4. (10 points) True or False: Let W1 and W2 be subspaces of a vector space V over a field
F. Prove or disprove the following sets are subspaces of V .

(a) The intersection of W1 and W2, given by

W1 ∩W2 = {v ∈ V | v ∈ W1 and v ∈ W2}.

(b) The difference of W1 from W2, given by

W2 −W1 = {v ∈ V | v ∈ W2 and v /∈ W1}.
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