
Math 115A - Spring 2019

Exam 1

Full Name:

UID:

Instructions:

• Read each problem carefully.

• Show all work clearly and circle or box your final answer where
appropriate.

• Justify your answers. A correct final answer without valid reasoning
will not receive credit.

• All work including proofs should be well organized and clearly
written using complete sentences.

• You may use the provided scratch paper, however this work will
not be graded unless very clearly indicated there and in the exam.

• Calculators are not allowed but you may have a 3× 5 inch notecard.

Page Points Score

1 10

2 10

3 10

4 10

Total: 40
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1. (10 points) True or False: Prove or disprove the following statements.

(a) The set W = {A + AT ∈Mn×n(F) | A ∈Mn×n(F)} is a subspace of Mn×n(F).

(b) The set W = {(x, y) ∈ R2 | y = x2} is a subspace of R2
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2. (10 points) Suppose that T : V → W and S : U → V are linear maps of finite-dimensional
vector spaces with the property that T ◦ S = 0.

(a) Show imS ⊆ kerT .

(b) Suppose S and T further satisfy that S is injective, T is surjective, and imS = kerT .
Show that dimV = dimU + dimW . Hint: You may use that since S is injective
kerS = {0}.
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3. (10 points) Let V be a vector space over a field F such that dimF V = 2.

(a) Show there exist subspaces W1,W2 ⊆ V such that W1 and W2 are each one-dimensional
and V = W1 ⊕W2.

(b) Let V = R2 and W1 = span{e1}. Show that the complement W2 is not necessarily
unique. That is, give examples of two distinct subspaces W2 and W ′

2 such that
V = W1 ⊕W2 and V = W1 ⊕W ′

2.
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4. (10 points) Consider the function T : M2×2(F)→M2×2(F) defined by

T (M) = HM −MH where H is the matrix H =
(
1 0
0 −1

)
.

(a) Prove that T is a linear transformation.

(b) Find the rank and nullity of T .
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