Math 115A - Spring 2019

Exam 1

Full Name:		

UID: _____

Instructions:

- Read each problem carefully.
- Show all work clearly and circle or box your final answer where appropriate.
- Justify your answers. A correct final answer without valid reasoning will not receive credit.
- All work including proofs should be well organized and clearly written using complete sentences.
- You may use the provided scratch paper, however this work will not be graded unless very clearly indicated there and in the exam.
- Calculators are not allowed but you may have a 3×5 inch notecard.

Page	Points	Score
1	10	
2	10	
3	10	
4	10	
Total:	40	

THIS PAGE LEFT INTENTIONALLY BLANK

You may use this page for scratch work. Work found on this page will not be graded unless clearly indicated here and in the exam.

THIS PAGE LEFT INTENTIONALLY BLANK

You may use this page for scratch work. Work found on this page will not be graded unless clearly indicated here and in the exam.

- 1. (10 points) True or False: Prove or disprove the following statements.
 - (a) The set W = {A + A^T ∈ M_{n×n}(𝔅) | A ∈ M_{n×n}(𝔅)} is a subspace of M_{n×n}(𝔅).
 (b) The set W = {(x, y) ∈ ℝ² | y = x²} is a subspace of ℝ²

- 2. (10 points) Suppose that $T: V \to W$ and $S: U \to V$ are linear maps of finite-dimensional vector spaces with the property that $T \circ S = 0$.
 - (a) Show im $S \subseteq \ker T$.
 - (b) Suppose S and T further satisfy that S is injective, T is surjective, and im $S = \ker T$. Show that dim $V = \dim U + \dim W$. *Hint:* You may use that since S is injective $\ker S = \{0\}$.

- 3. (10 points) Let V be a vector space over a field \mathbb{F} such that $\dim_{\mathbb{F}} V = 2$.
 - (a) Show there exist subspaces $W_1, W_2 \subseteq V$ such that W_1 and W_2 are each one-dimensional and $V = W_1 \oplus W_2$.
 - (b) Let $V = \mathbb{R}^2$ and $W_1 = \text{span}\{e_1\}$. Show that the complement W_2 is not necessarily unique. That is, give examples of two distinct subspaces W_2 and W'_2 such that $V = W_1 \oplus W_2$ and $V = W_1 \oplus W'_2$.

Page 3

- 4. (10 points) Consider the function $T: M_{2\times 2}(\mathbb{F}) \to M_{2\times 2}(\mathbb{F})$ defined by T(M) = HM MH where H is the matrix $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
 - (a) Prove that T is a linear transformation.
 - (b) Find the rank and nullity of T.