Some structure theorems for $R O(G)$-graded cohomology

Clover May UCLA

September 28, 2019

$R O(G)$-graded cohomology

- CW-complex $X \rightsquigarrow$ cohomology $H^{*}(X)$
- Suspension $\Sigma^{m} X=S^{m} \wedge X=\left(S^{m} \times X\right) /\left(S^{m} \vee X\right)$
- Suspension isomorphism $\tilde{H}^{n}(X) \cong \tilde{H}^{n+m}\left(\Sigma^{m} X\right)$

$$
G \text { - finite group }
$$

- G-CW complex
- V - real representation of G
- $S^{V}=\widehat{V}$ one-point compactification
- Suspension $\Sigma^{V} X=S^{V} \wedge X$
- Suspension isomorphism $\tilde{H}_{G}^{\alpha}(X) \cong \tilde{H}_{G}^{\alpha+V}\left(\Sigma^{V} X\right)$

$R O\left(C_{2}\right)$-graded cohomology

$$
G=C_{2}
$$

- Representations $V=\mathbb{R}^{p, q}=\left(\mathbb{R}_{\text {triv }}\right)^{p-q} \oplus\left(\mathbb{R}_{s g n}\right)^{q}$
- Representation spheres $S^{V}=S^{p, q}$

$S^{1,0}$

$S^{1,1}$

$S^{2,0}$

$S^{2,1}$

$S^{2,2}$
- Coefficients in the constant Mackey functor: $\underline{\mathbb{F}}_{2}$
- Write $H_{G}^{\alpha}\left(X ; \underline{\mathbb{F}_{2}}\right)=H^{p, q}\left(X ; \underline{\mathbb{F}_{2}}\right)=H^{p, q}(X)$

Cohomology of a point

Examples

For any $X, H^{*, *}(X)$ is an \mathbb{M}_{2}-module via $X \rightarrow p t$
$\bullet=\mathbb{F}_{2}$
$\mid \cdot \tau$

$H^{*, *}\left(C_{2} ; \mathbb{F}_{2}\right)$

$H^{*, *}\left(S_{a}^{n} ; \mathbb{F}_{2}\right)$

$H^{*, *}\left(S_{a}^{n} ; \underline{\mathbb{F}_{2}}\right)$

Torus examples

Cohomologies of C_{2}-actions on a torus with $\underline{\mathbb{F}}_{2}$-coefficients

Structure theorem

Theorem (M, 2018)
If X is a finite $C_{2}-C W$ complex then $H^{*, *}\left(X ; \mathbb{F}_{2}\right)$ is a direct sum of shifted copies of $\mathbb{M}_{2}=H^{*, *}\left(p t ; \underline{\mathbb{F}_{2}}\right)$ and $H^{*, *}\left(S_{a}^{n} ; \underline{\mathbb{F}_{2}}\right)$.

x

X

\checkmark

$R O\left(C_{3}\right)$-graded cohomology

$$
G=C_{3}
$$

- Representations $V=\mathbb{R}^{p, q}=\left(\mathbb{R}_{\text {triv }}\right)^{p-q} \oplus\left(\mathbb{R}_{\text {rot }}^{2}\right)^{q / 2}$
- Representation spheres $S^{V}=S^{p, q}$

$S^{1,0}$

$S^{2,0}$

$S^{2,2}$
- Coefficients in the constant Mackey functor: $\underline{\mathbb{F}}_{3}$
- Write $H_{G}^{\alpha}\left(X ; \underline{\mathbb{F}_{3}}\right)=H^{p, q}\left(X ; \underline{\mathbb{F}_{3}}\right)$ for $q=$ even

Cohomology of a point

Examples

For any $X, H^{*, *}\left(X ; \mathbb{F}_{3}\right)$ is an \mathbb{M}_{3}-module via $X \rightarrow p t$

$$
H^{*, *}\left(C_{3} ; \underline{\mathbb{F}_{3}}\right)
$$

$H^{*, *}\left(S_{\text {free }}^{1} ; \underline{\mathbb{F}_{3}}\right)$

$H^{*, *}\left(S_{\text {free }}^{3} ; \underline{\mathbb{F}_{3}}\right)$

Egg-beater

Cofiber sequence $C_{3+} \rightarrow S^{0,0} \rightarrow E B$

$\tilde{H}^{*, *}\left(E B ; \underline{\mathbb{F}_{3}}\right)$

$\tilde{H}^{*, *}\left(E B ; \underline{\mathbb{F}_{3}}\right)$

For $G=C_{2}$ this cofiber sequence is $C_{2+} \rightarrow S^{0,0} \rightarrow S^{1,1}$

Structure theorem

"Theorem" (M , in progress)
If X is a finite $C_{3}-C W$ complex then $H^{*, *}\left(X ; \mathbb{F}_{3}\right)$ is a direct sum of shifted copies of:

$$
\mathbb{M}_{3}=H^{*, *}(p t), \quad H^{*, *}\left(C_{3}\right), \quad H^{*, *}\left(S_{f r e e}^{2 n+1}\right), \quad \text { and } \widetilde{H}^{*, *}(E B) .
$$

Thank you!

