Some structure theorems for RO(G)-graded cohomology

Clover May UCLA

September 28, 2019

RO(G)-graded cohomology

- CW-complex $X \rightsquigarrow$ cohomology $H^*(X)$
- Suspension $\Sigma^m X = S^m \wedge X = (S^m imes X)/(S^m \lor X)$
- Suspension isomorphism $\tilde{H}^n(X) \cong \tilde{H}^{n+m}(\Sigma^m X)$

G - finite group

- *G*-CW complex
- V real representation of G
- $S^V = \widehat{V}$ one-point compactification
- Suspension $\Sigma^V X = S^V \wedge X$
- Suspension isomorphism $ilde{H}^{lpha}_G(X) \cong ilde{H}^{lpha+V}_G(\Sigma^V X)$

$RO(C_2)$ -graded cohomology

$$G = C_2$$

- Representations $V = \mathbb{R}^{p,q} = (\mathbb{R}_{triv})^{p-q} \oplus (\mathbb{R}_{sgn})^q$
- Representation spheres $S^V = S^{p,q}$

• Coefficients in the constant Mackey functor: \mathbb{F}_2

• Write
$$H^{\alpha}_{G}(X; \underline{\mathbb{F}}_{2}) = H^{p,q}(X; \underline{\mathbb{F}}_{2}) = H^{p,q}(X)$$

Cohomology of a point

Examples

For any X, $H^{*,*}(X)$ is an \mathbb{M}_2 -module via $X \to pt$

Torus examples

Cohomologies of C_2 -actions on a torus with \mathbb{F}_2 -coefficients

Structure theorem

Theorem (M, 2018)

If X is a finite C_2 -CW complex then $H^{*,*}(X; \underline{\mathbb{F}}_2)$ is a direct sum of shifted copies of $\mathbb{M}_2 = H^{*,*}(pt; \mathbb{F}_2)$ and $H^{*,*}(S^n_a; \mathbb{F}_2)$.

$RO(C_3)$ -graded cohomology

$$G = C_3$$

- Representations $V = \mathbb{R}^{p,q} = (\mathbb{R}_{triv})^{p-q} \oplus (\mathbb{R}^2_{rot})^{q/2}$
- Representation spheres $S^V = S^{p,q}$

- Coefficients in the constant Mackey functor: \mathbb{F}_3
- Write $H^{\alpha}_{G}(X; \underline{\mathbb{F}_{3}}) = H^{p,q}(X; \underline{\mathbb{F}_{3}})$ for q = even

xy xz yz z² $\bullet = \mathbb{F}_3$ x^2 • y x 1 1 р р w w $\frac{W}{x}$ $\mathbb{M}_3 = H^{*,*}(pt; \mathbb{F}_3)$ $\mathbb{M}_3 = H^{*,*}(pt; \mathbb{F}_3)$ $\tilde{H}^{*,*}(S^{p,q}) \cong \Sigma^{p,q} \mathbb{M}_3$

Cohomology of a point

Examples

For any X, $H^{*,*}(X; \mathbb{F}_3)$ is an \mathbb{M}_3 -module via $X \to pt$

For $G = C_2$ this cofiber sequence is $C_{2+} \rightarrow S^{0,0} \rightarrow S^{1,1}$

Structure theorem

"Theorem" (M, in progress) If X is a finite C_3 -CW complex then $H^{*,*}(X; \underline{\mathbb{F}}_3)$ is a direct sum of shifted copies of:

 $\mathbb{M}_3 = H^{*,*}(pt), \quad H^{*,*}(C_3), \quad H^{*,*}(S^{2n+1}_{free}), \quad and \; \widetilde{H}^{*,*}(EB).$

Thank you!