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SUMMARY 

This paper reviews some of the main approaches to the analysis of multivariate censored survival data. Such 
data typically have correlated failure times. The correlation can be a consequence of the observational 
design, for example with clustered sampling and matching, or it can be a focus of interest as in genetic 
studies, longitudinal studies of recurrent events and other studies involving multiple measurements. We 
assume that the correlation between the failure or survival times can be accounted for by fixed or random 
frailty effects. We then compare the performance of conditional and mixture likelihood approaches to 
estimating models with these frailty effects in censored bivariate survival data. We find that the mixture 
methods are surprisingly robust to misspecification of the frailty distribution. The paper also contains an 
illustrative example on the times to onset of chest pain brought on by three endurance exercise tests during 
a drug treatment trial of heart patients. 

1. INTRODUCTION 

In many medical studies the sampling of response times may be clustered, for example in a sample 
of related individuals, in matched subjects, or in studies with repeated measurements or a set of 
different measures for each individual. Hougaard' analysed data of the first kind, in which the 
survival times of each of 50 treated female rats were compared with those of two female sibs 
drawn from the same litters.2 Harrington et aL3 examined matched data, comparing the age of 
onset of depression in adulthood of subjects who had experienced depression in childhood with 
those matched on other childhood symptoms. In this paper we consider a repeated measures 
example using the data shown in Table I.4 Patients with coronary heart disease pedalled an 
exercise bike until they experienced angina. Having then been administered an oral dose of 
isosorbide dinitrate, they were persuaded back on the bike to provide exercise times at 1 hour and 
3 hours after drug treatment. 

In all of these types of study the response times are commonly censored. In the rat example, in 
only one experimental sibship did all three rats die during the 104 week study; in 11 of them two 
rats died, in 15 of them only one died, and 23 sibships survived complete. In the heart disease 
example, although all 21 patients experienced angina when untreated, a third did not 1 hour after 
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Table I. Exercise times to angina pectoris* (seconds) on three occasions after oral isosorbide dinitrate 
(mg/kg) (Danahy et aL4) 

~~ 

Time Dose Time Dose 
0 1 3 0 1 3 

136 (445) (393) 0.58 147 403 290 0.44 
049 370 
0.3 1 

250 306 206 034 23 1 (540) 
215 232 258 0.24 224 432 29 1 

492 0.20 
566 0.24 

235 248 298 0.3 7 152 (733) 
129 121 110 0.38 417 (743) 
425 580 613 0.32 213 250 150 038 

0.4 1 490 (559) (557) 027 
0 5  1 0.37 406 65 1 624 

441 (504 )  (519) 
208 264 210 
154 110 123 0.37 229 327 280 0.24 
89 145 172 0.53 265 (565) (505) 0.5 1 

250 230 264 0.24 

* Observations censored by fatigue in brackets. 

treatment and four did not 3 hours after treatment. These exercise times were censored through 
patients becoming too exhausted to continue. 

In this paper we review some of the main approaches to the analysis of correlated survival data. 
We assume that the correlation between responses occurs because they are dependent upon 
exogenous causal variables. Sometimes conditioning on an observed set of such variables, 
typically by their inclusion as covariates within some regression function, can achieve approxi- 
mate conditional independence. Then, the analysis can proceed along familiar lines using 
standard univariate methods. More commonly, however, the correlation arises from both 
observed and unobserved covariates, the latter now being commonly referred to as   frail tie^'^ or 
‘unobserved heterogeneity’.6 

Univariate survival models use a mixture likelihood to integrate out the frailty effects. Elbers 
and Ridder,7 Ridder* and Heckman and Singer6 study the conditions necessary to achieve 
identifiability of both parameters of the hazard function and the frailty distribution in univariate 
data. Elbers and Ridder7 focus on mixing densities with finite mean, and emphasize the import- 
ance of having regressor variables with sufficient variation in order to identify uniquely the 
functions of interest. Heckman and Singer6 show how identifiability is maintained for a Weibull 
hazard function even without regressors provided the frailty distribution has finite mean. If it is 
assumed that the frailties have infinite mean,’.’ then the parameters of the hazard function and 
frailty density cannot be separately estimated in single-spell data. Hougaardg*lo argued that 
being able to estimate the frailty distribution from the univariate data is scientifically unreason- 
able, a point that we shall return to. 

The importance of identifiability, and of assumptions concerning the form of the frailty, were 
emphasized by Heckman and Singer,6 who appeared to demonstrate high sensitivity of results to 
alternative choices of finite mean frailty distribution. In a study of the factors affecting the 
duration of single-spell male unemployment, they compared the estimated parameters for 
a Weibull baseline hazard with different distributions for the frailty. They noted many changes in 
sign and magnitude of the estimated covariate parameters. This evidence was used to support 
their argument for the need for ‘non-parametric’ methods that made weaker assumptions about 
the form of distribution. By constrast the work of Lancaster and Nickell,” Struthers and 
Kalbfleisch,” Schumacher et a1.13 and L a n ~ a s t e r ’ ~  noted that ignoring frailty with finite mean 
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would, in models of single-spell data with time constant covariates, result in a bias towards zero in 
the parameter estimates. Allowing for such frailty would therefore only cause the covariate 
parameter estimates to increase in magnitude, the extent of increase depending on the extent to 
which the assumed frailty distribution approximates the true frailty distribution. There should be 
no changes of sign. This suggests that the Heckman and Singer model was misspecified in some 
other way.” 

Another consequence of ignoring frailty effects with finite mean is a negative bias in the 
estimated time dependence, often referred to as spurious duration dependency or cumulative 
inertia.’ ‘*16 

Multivariate survival data allow the hazard function to be estimated with either finite or 
infinite mean frailty distributions. We examine the empirical importance of such distributional 
assumptions for multivariate survival analysis, describing various models, their estimation and 
comparative performance. Section 2 introduces the notation. We use an example of the three 
endurance exercise tests as a motivating illustration. Section 3 reviews conditional likelihood 
methods. Section 4 discusses mixture likelihood methods for models with parametric and non- 
parametric baseline hazards. Section 5 presents results of a small simulation study that assesses 
the relative merits of these methods on randomly censored bivariate data. Section 6 extends these 
considerations to examine their robustness to what we considered a potentially quite extreme 
form of misspecification, namely the presence of a resilient subpopulation unaffected by the causal 
risk in question. Section 7 considers generalizations of these different approaches to allow for 
multiple factor forms of frailty, and Section 8 illustrates their application to the angina example 
introduced in Section 2. Section 9 concludes the paper. 

2. NOTATION 

Consider a collection of n sample units i ,  with mi measures of survival/failure time tij, t i j  > 0 
( i  = 1,. . ., n; j = 1, ..., mi) and their respective indicator variables di j  (0 = censored, 1 = otherwise). 
In a clustered sampling design the sampling units might be families, school classes or towns with 
several subjects drawn from within each unit. For the repeated measures data of TableI, 
n = 21 and mi = 3 for all i. 

In general, we consider covariates as falling into two groups. The first group of p + 1 
covariates, of which the first takes the value 1 to enable a constant to be estimated, have values 
that are common across measurement occasions j. For sample unit i these will be denoted by the 
vector x i .  The other group of r covariates, denoted by the vector zij, have values that vary across 
both sample units and measurement occasions. For simplicity all the covariates are assumed 
constant within each measurement occasion/type, but this is not a necessary requirement for the 
great majority of what follows. 

In the absence of frailty effects a typical proportional hazards specification for the hazard 
associated with each survival time is of the form 

where 

and J.y(tij) is the baseline hazard for the jth response time of sample unit i. For data from exercise 
time 0, immediately preceding oral administration of isosorbide dinitrate, 

Pi0 = exP(qi0) = ~ x P ( B o )  3 (la) 
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while for the exercise times at 1 and 3 hours we might have 

Pi1 = exP(rti1) = exp(bo + 81 Dose,) 

pi3 = Wrt i J )  = ~XP(BO + b 3  Dosei) 
(1b) 

(14 
respectively. 

There are several reasons why frailty effects may need to be added to a model such as this. The 
first and most widely quoted reason occurs when the observed sources of variation in the 
explanatory variables fail to fully account for the true differences in risk, that is in addition to 
x and z there are other important but omitted variables present. It is often assumed that the total 
effect of the omitted variables can be captured by individual specific effects a, which can be 
discrete or continuous. They can also represent observed but not included important explanatory 
variables as well as unobserved or unmeasured explanatory variables and may also be correlated 
with the included covariates.” 

The second justification for including frailty effects occurs when the model is correctly specified 
for the true covariates but measurement problems have resulted in error in the observed 
covariates. In this case the individual specific effects will usually be correlated with the covariates. 
Measurement error in the observed response times can also be modelled as frailty effects, for 
example Lancaster’s Weibull model14 with multiplicative error in t, and the Gompertz model 
with additive error in t. 

The third justification for including frailty effects occurs when there is variation in the 
coefficients of the model between individuals, for example when it is expected that individuals 
respond differently to the same treatment. 

If we have a response specific frailty aij, then 

Aij(t i j ;  a) = A~(tij)exp(qij + aij) . 
This gives for individual i, conditional upon the value of the frailty term, a likelihood 

Li = n [Aij(tij;a)]diJexp[ - Aij(tij;a)] , 
i 

where 

Aij(ti j;  a) = Aij(s; a)ds . r 
If fi = ( f ix , f iz ) ,  and the vector of parameters in the baseline hazard is y, then attempts to directly 
estimate (B, y )  with the aij as fixed effects dummy variables fall foul of the ‘incidental parameter’ 
problem,’* and give rise to inconsistent estimates of the hazard function and regression coeffi- 
cients. The mixture and conditional likelihood methods developed to overcome this problem 
have for the most part postulated a ‘one factor’ model of frailty, in which the aij are constant over 
j and independent over i (see for example Aalen and Hu~ebye’~). The correlation between the aij 
and the xi and zi j  cannot be recovered for covariates which do not vary within measures in 
single-measure data. 

3. CONDITIONAL LIKELIHOOD ESTIMATION 

The simplest conditional approach can be used when the baseline hazard is A E ( t i j )  = Ao( t i j ) ,  being 
constant across sample units i and measures j and when aij = ai. In this case 

A i j ( t i j ;  a) = nO(tij)exp(qij + ai) . 
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In the absence of censoring, simple conditional estimation is possible for some baseline hazards 
A o ( t i j ) .  But in general, in the presence of censoring the appropriate sufficient statistics for the {a i }  
make estimation intractable.20 Rather curiously, censoring does not present any such problem if 
a sample unit specific non-parametric hazard function is assumed. Forming the standard partial 
likelihood,21 but one stratified by sample unit, removes both the baseline hazard and sample unit 
specific constant to give 

where Ri( t i j )  is the usual proportional hazards risk set but defined for the ith sample unit alone. 
Maximization of equation (2) for flz is easily undertaken using any proportional hazards program 
that allows stratification, but of course only f lz and not flX can be estimated. 

For univariate data this partial likelihood is known to possess good efficiency even in the 
presence of substantial censoring. However, with censored multivariate data the loss of efficiency 
in using the above conditional estimator may be more severe since the only sample units that 
contribute to the likelihood are those that can provide at least one survival time that is neither 
censored nor the longest of the observed durations for that sample unit. 

4. MIXTURE LIKELIHOOD ESTIMATION WITH PARAMETRIC AND 
NON-PARAMETRIC HAZARDS 

We can also form a likelihood for ti ,  the 1 x mi vector of responses, that is marginal with respect to 
LY under the assumption that aij = ai and the less restrictive assumption that A t ( t i j )  = Aj'(rij), 
under which the baseline hazard varies by response. If the ai are independent of the included 
covariates and have probability density g(a) with parameters K ,  then estimates of 8 = (7, fl, K )  can 
be obtained by maximizing 

Li = n Aij ( t i j ;  exp{ - Aij(tij; a)} dG(a) . 
S j  

(3) 

Maximization of equation (3) for 8 is made easier if the integral gives a closed form. Some 
tractability is obtained if we make the substitution zi = exp(ai), where 7 has probability density 
4 7 ) .  If the model contains a constant flo there is no loss of generality in assuming that E(7)  = 1. 
Many researchers have assumed h(7)  to be the gamma distribution,' 1*14*19*22-24 with, 

h(7) = K K T K -  ' eXp( - 7 K ) / r ( K ) ,  

which has var(7) = 1 / ~ .  

the form 
If Aij = AY(t i j )pi j  and A i j  = AY(tij)pij ,  the gamma distribution for 7i gives a mixture likelihood of 

where di . = X,dij and Ai, = X,Aij. 
The gamma distribution is a member of a family of distributions suggested by Hougaard,' 

which also includes the inverse Gaussian and models in which E ( r )  = oc) , such as the positive 
stable A normal distribution for G(a) in equation (3) does not lead to an analytically 
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tractable integral, but numerical integration by Gaussian quadrature, in which the ai are replaced 
by a set of masses of known weight and location,25 has been used. Increasing use of estimation via 
Gibbs sampling26 or other stochastic integration method is likely to make the normal model 
more popular. 

Bock and Aitkin,26 in the context of binary item response modelling, showed how the Gaussian 
quadrature approach could be extended to estimate the mass of each quadrature point, rather 
than treating each as known. Heckman and Singer6 extended this further for application to 
parametric survival data by showing how both the weights and the locations could be estimated. 
Theoretical  result^^^-^' showed how under apparently quite weak conditions the discrete 
distribution formed by such a finite set of free points of mass corresponded to the non-parametric 
maximum likelihood (NPML) representation of any finite mean continuous frailty distribution. 
Numerous empirical applications have subsequently shown how the number of mass points 
required to obtain the non-parametric representation is usually quite small, rarely more than ten 
and often as few as three or four. Estimation can follow a generalization of the procedures 
described above or can be undertaken in more specialized programs, for example MIXTURE.31 

If the T~ were known fixed effects, inference about 8 could be based on the log-likelihood 
constructed from the joint distribution of t i j  and T ,  namely 

and this could be maximized more straightforwardly using standard survival analysis software. 
Of course, the T~ are not known but an initial guess at 8, 8,, can be used to calculate the expected 
value of 1, with respect to T given t. The expected log-likelihood, Q(O,8,) = E[I,;  T It, 8,] ,  can be 
maximized with respect to 8, and the solution used to replace the initial guess 8, in a recalculation 
of Q(O,O,).  This sequence of expectation and maximization steps is an example of an EM 
algorithm, and forms the basis of the GLIMJ2 macro for the gamma-Weibull model of equation 
(4) in Clayton.33 

The EM approach can also be applied to the multivariate form of Cox’s partial likelihood. 
Gill34 presents some results for a gamma frailty piece-wise exponential model, illustrating some of 
the links between the work of Clayton and C u z i ~ k ~ ~  and that of Self and Prenti~e.’~ Self and 
PrenticeJ5 derive a model with hazards L O ( t i j ) p i j E [ t  I t h i ,  81, in which the expected values of the 
frailties are conditional on the subset ( t h i )  of ti which have failed by time t i j .  (Unlike EM 
the expectations are not based on the final posterior density of T . )  The density of T changes 
with time and as a result the estimate of E[rI th i ,8 ] ,  given by [K + c j d i j ( t h i ) ] /  
[ K  + Z j A j ( t h i ) p i j ]  for gamma frailty, varies as information about ti accumulates, even though the 
true value is assumed constant over time. In addition Self and P r e n t i ~ e ~ ~  suggest an approxima- 
tion to E [ r I t i , 8 ]  which allows the maximization step to be performed by standard partial 
likelihood software by the inclusion of the term c j [ d i j ( t h i )  - I \ j ( t h i ) p i j ]  as a time Varying 
covariate with parameter K. The estimation process is cycled until the values of 8 remain 
unchanged. Models and EM algorithms based on counting process derivations have also been 
p r o p o ~ e d . ~ ~ . ~ ~  

The next section presents the main results from a small simulation study that assesses the 
relative merits of the alternative models on a particular set of randomly censored bivariate data. 

5. MONTE CARL0 COMPARISON OF CONDITIONAL, GAMMA, 
SELF AND PRENTICE, NPML AND STABLE LAW MODELS 

Before proceeding to consider more complex models and empirical examples an exploratory 
simulation study of the performance of the basic forms of these models was undertaken. While the 
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Table 11. Monte Carlo for samples of 100 bivariate survival times with log-gamma frailty, 60 
per cent random censoring and pairs 50 per cent discordant for a dummy variable: parameter 

sample means and standard deviations (n = 100, m = 2, 100 replicate samples) 

Model Beta Constant Weibull 
True values B 1  = 1 Bo = 0 y = 2  

Conditional 

Gamma 

Self and Prentice 

Normal compound 

Mass point 

Stable law 

1.15 
(0.27) 

1.02 
(0.1 1) 

1.02 
(0.07) 

1.04 
(0.12) 

1.10 
(0.18) 

0.96 
(0.10) 

0.06 
(0.05) 

(0.06) 
- 0.06 

- 0.48 
(0.06) 

- 1.15 
(0.92) 

(0.07) 
- 062 

2.04 
(0.05) 

2.03 
(0.06) 

2.09 
(007) 

2.18 
(0.08) 

1.95 
(0.07) 

simulations may not be informative about the properties of the models in contexts different from 
those assumed, they may help to shed some light on the differences between the models in 
a particular context. Samples of 100 pairs, subscripted i, of bivariate Weibull distributed survival 
times were generated with rate parameters tiexp(fixij) and a common shape parameter. The 
values of t i  were drawn from a gamma distribution with mean and variance 1, the B coefficient 
was set equal to 1 and the shape parameter equal to 2. The exogenous covariates {xil, xi2} were 
time constant dummy variables with values {O,O} for 50 pairs and (0, I} for the remaining 50. The 
response times were then subject to approximately 60 per cent random censoring with censoring 
times generated from a unit exponential distribution. 

Although, as explained above, several of the models examined could have been estimated using 
modifications of existing software, for this exercise programs were written in FORTRAN. The 
conditional, gamma, normal (using ten-point Gaussian quadrature) and stable law models were 
all fitted by direct maximization of the likelihood function. The model of Self and Prentice3’ was 
estimated by maximizing the partial likelihood that included a time varying multiplicative term 
[K + C j d i j ( t h i ) ] / [ K  + C j A j ( t h i ) p i j ] .  The integrated hazard was estimated using Breslow’s 
m e t h ~ d . ~ * * ~ ~  The mass point model was estimated using direct likelihood maximization, with an 
additional routine to examine solutions to determine if and where an additional mass was 
required. Results on parameter estimation are shown in Table 11. We concern ourselves primarily 
with the estimation of the regression coefficient p. 

The poor performance of the conditional estimator is due to the large amount of censoring in 
these samples. The normal frailty model gave results close to that of the fully parametric and 
correct gamma model, unsurprising in view of the similarity of the log-normal distribution to the 
gamma distribution. As indicated earlier, the number of masses required to achieve the ML 
non-parametric representation for the frailty distribution was not large, on average only four 
masses being required. However, the mass point model showed substantially larger sampling 
variance and quite marked bias in the estimate of the constant, calculated in this model as the 
mean location of the points weighted by their mass. Closer inspection of the fitted models 
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Table 111. Monte Carlo results for LR test statistic (n  = 100, m = 2, 100 replicate samples, 50 per cent 
discordant, 60 per cent random censoring, log-gamma frailty) 

x: 0.065 0.46 
P 0.20 050 

Conditional 0 1 5  0.57 
Gamma 0.2 1 0.48 
Self and Prentice 0.24 050 
Stable law 0.24 0.46 
Normal 0.23 0.48 
Mass point 0.16 0.38 

Quantiles of distribution 

1.64 2.71 3.84 
0.80 090 0.95 

5.4 1 6.63 
098 0.99 

0 8 3  0.9 1 0.97 
0.79 0.9 1 0.97 
0.85 093 0.95 
0.78 095 0.97 
0.83 0.92 0.95 
074 0.84 0 9  1 

0.99 1 .oo 
0.99 1 .00 
097 0.99 
098 0.99 
0.98 1 .oo 
0.93 096 

suggested that this arose from a sporadic tendency to represent censored observations by 
individuals with very low estimated frailty, these being represented by a mass point with a very 
large negative location. The stable law model, in spite of departing from the true model in 
important theoretical respects, performs surprisingly well for the two parameters of main interest 
(8’ and y), although some evidence for compensating effects for its known distributional differ- 
ences is shown in the negative bias in the constant. 

Table 111 shows the distribution of the LR test statistic for bl, the regression coefficient for the 
dummy variable, equal to its true value. All except the mass point model performed reasonably 
well. 

6. THE PRESENCE OF A NOT-AT-RISK SUBPOPULATION 

The form of frailty considered in the previous sections has excluded the possible occurrence of 
a subpopulation who are entirely robust, immune or otherwise simply not at  risk from the cause 
in question. Farewell4’ suggests that such individuals might arise in some treatment trials in 
which complete ‘cure’ is possible, but otherwise uses the more neutral terminology of ‘long-term 
survivors’. Heckman and Walker4’ consider a sterile subgroup within an analysis of the time to 
first birth. In state transition processes such individuals have been commonly referred to as 

In the presence of such a subpopulation the conditional approach can be used without 
modification. In practice this should also be true of the mass point approach, since such 
a subpopulation can be represented by the occurrence of a mass located on the far left of the 
distribution corresponding to a negligible transition intensity, though computational conver- 
gence is quicker if explicit allowance is made for a subgroup with zero intensity.43 Formally, none 
of the other estimated models account for such stayers. They can be extended in finite mixture 
fashion to allow a zero-intensity spike to the distribution or by using the more general Hougaard 
family’ along the lines of Aalen.44 

The upper half of Table IV shows the results of some further simulations similar to those of 
Table 11, but with xil and xi2 discordant in value for all pairs. The performance of the conditional 
estimator, in particular, should increase as the proportion of discordant pairs is increased. This is 
borne out by a comparison of the top of Table IV with Table 11. In the lower half of Table IV 
a random 33 per cent of the pairs of observations were ‘stayers’ (or ‘cured’), and were assigned 
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Table IV. Monte Carlo for samples of 100 bivariate survival times with log-gamma frailty, 60 
per cent random censoring pairs 100 per cent discordant for a dummy variable and 33 per cent 
‘stayers’: parameter sample means and standard deviations ( n  = 100, m = 2, 100 replicate 

samples) 

Model Beta Constant Weibull 
True values B1 = 1 B o = O  y = 2  

Conditional 

Gamma 

Stable law 

Mass point 

With 33 per cent stayers 

Conditional 

Gamma 

Stable law 

Mass point 

1.05 
(0.17) 
1.02 0.06 2.05 

(0.08) (0.06) (0.05) 
0.96 - 0.63 1.96 

(0.09) (0.07) (0.07) 

1.10 - 1.05 2.19 
(0.12) (0.86) (0.09) 

1.04 
(029) 
1.09 

(0.19) 
0.20 226 

(0.16) (0.12) 
0.88 - 4.58 1.92 
(0.1 1 )  (0.20) (0.07) 

- 1.08 
(0.19) 

2.2 1 
(016) 

a zero hazard rate. The models formally more capable of incorporating stayers show lower bias in 
the estimates of p, with both the conditional and the mass point models actually showing, in these 
samples, lower bias in the presence of stayers than in their absence. Also as expected, the bias 
shown by the gamma model, the true model in the upper but not the lower half of the table, is not 
as great as that shown by the stable law. Even so, in all four models the bias is not large in 
comparison with the sampling variance of the estimates. 

Table V shows the distribution of the LR test statistic for the regression coefficient /I. Again the 
mass point model was the worst of the four models tested, even in the presence of ‘stayers’ for 
which it might have been expected to have some relative advantage. By contrast, the stable law 
model that would have been expected to have some difficulty with ‘stayers’ gave a test statistic 
closest in distribution to the nominal chi-square. 

7. GENERALIZATIONS T O  MORE COMPLEX COVARIANCE STRUCTURES 

The conditional maximum likelihood estimator is not easily extended to more complex covari- 
ance structures such as might be present in multilevel data. This is because of the difficulty in 
constructing an appropriate sufficient statistic for the sample unit frailty. 

A marginal likelihood model with a normal frailty term in the linear predictor could be 
generalized along the same lines as normal theory linear variance components models, to give 
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TableV. Monte Carlo results for LR test statistic (n = 100, m = 2, 100 replicate samples, 100 per cent 
discordant, log-gamma frailty, 60 per cent random censoring, 33 per cent ‘stayers’) 

x: 
P 

Quantiles of distribution 

00647 0.455 1-642 2.706 3.841 5.412 6.633 

0.20 0.50 0.80 090 0.95 0.98 0.99 

No stayers 

Conditional 
Gamma 
Stable law 
Mass point 

029 
0.23 
0.26 
0.19 

Approximately 33 per cent stayers 

Conditional 
Gamma 
Stable law 
Mass point 

0.2 1 
0.08 
0.20 
012 

0.54 0.84 0.9 1 
0.45 0.83 0.92 
0.54 0.80 089 
0.5 1 0.74 0.88 

0.48 0-75 0.87 
0.38 0-74 0.86 
0.48 0.75 0.87 
038 072 087 

0.94 
093 
0.93 
0.92 

093 
0 9  1 
094 
090 

0.94 0.9 5 
096 0.99 
0.96 0.98 
0.92 096 

097 0.99 
0.95 0.9 8 
0.98 0.99 
093 0.96 

multilevel models.45 Random coefficients as well as random constants would be possible, 
and several components organized in hierarchical or non-hierarchical fashion and with 
possible correlations between them. A simple extension that maintains the univariate error 
structure of the basic model is to allow different random error variances from measure to 
measure, equivalent to allowing different scale factors. This would appear essential where the 
observations represent quite different measures rather than being replications of the same 
measurement. 

Interest in models using the multivariate extreme value (MEV) distribution has recently been 
renewed in the work of C r ~ w d e r , ? ~  H~ugaard ,~ . ’  M ~ F a d d e n ~ ~  and T a ~ n . ~ ~  M ~ F a d d e n ~ ~  
applied it to consumer choice over categorical alternatives, a distribution equivalent, in our 
context, to the following two level nested form: 

where the rn measurements are exhaustively allocated to the mutually exclusive sets S1 and S2, 
and 0 c K] < 1. Hougaard’ showed that this structure arises from a model of hierarchically 
organized independent stable law random components, each acting multiplicatively. The correla- 
tion of measurements between sets arises through one shared component and is determined by 
K ~ .  Measures within set 1 share this component and a second component, giving a correlation 
determined by both K~ and K ~ .  The correlation within set 2 is correspondingly determined by rcl 
and K ~ .  

A rather different generalization to the notion of frailty can be obtained by the use of a class of 
MEV distribution introduced by T a ~ n . ~ ~  This structure arises from a model of hierarchically 
organized additive stable law components. Alternatively, the sample units may be considered as 
made up of a mixture of those that exhibit a dependency among measurements and those for 
whom they are independent. In the simple case of one independent component and one 
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dependent component this is given by 

1 m 

Pr[t > ylz] = exp (1 - ej>Aij - z C (ejAij)llK , 
j =  1 j= 1 

with the joint marginal distribution 

- C (1 - 0j)Aij - 
j= 1 j= 1 

Such models would be valuable where co-morbidity in the form of the onsets of two conditions, 
such as childhood depression and anti-social behaviour, may represent a disorder distinct from 
either one alone.4* 

The inclusion of random coefficients within either of the hierarchical or Tawn classes of MEV is 
possible by making K a function of covariates. 

8. ILLUSTRATIVE EXAMPLE: EXERCISE TIMES 

Table VI presents the results from model fitting to the data of Table I with fil and /I3, as shown in 
equations (la)-(lc), measuring the effects of the administered dose after 1 and 3 hours respective- 
ly. The dose administered to each patient had been previously determined as the level above 
which side-effects occurred. All models fitted by marginal likelihood assumed Weibull baseline 
hazards with a single shape parameter y common across exercise occasions. 

The basic models allowed for a single component random effect or one-factor frailty. The 
mixture likelihood models gave estimates of the /? coefficients that were close to those from the 
conditional model. In this example differences might have arisen either through misspecification 
of the hazard or through the frailty being correlated with the included covariate, dose. As one 
might have expected, these data possess a slight negative correlation between the initial exercise 
times and dose, those subjects showing more severe initial incapacitation being administered 
larger doses. The conditional model makes no assumption as to the correlation of covariates with 
frailty. The mixture likelihood models would have to be extended to allow for such a correla- 
t i ~ n . ~ ' , ' ~  

As well as variation in exercise times as the result of an overall 'frailty' component of variance 
ro, which is common to all the responses, it might be reasonable to expect variation in response to 
the drug. This would require a second frailty effect T~ or component of variance which is only 
present in the last two responses. In this case the hazard for time 0 takes the form 

Aio(ti0; T O )  = J-O(tio)Toexp(qio) 1 

and 

Ai~(ti~;To, Tz) = Ao(ti3)r~'"2TzeXP(rli3) 9 

for times 1 and 3 respectively. If we let Aio, Ail and Ai3 be the integrated hazards for time 0, 1 
and 3, then the two-level MEV model of Hougaard' that is appropriate in this context is 
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Table VI. Analysis of angina pectoris data: parameter estimates and LR tests (PI, f13 and K~ 
against 0, y against 1) 

Parameter Conditional Normal compound Hierarchical MEV 
model l-level 2-level 1 -level 2-level 

8 0  

B1 

8 3  

- 5.10 
(1 5.40) 

(8.54) 
- 3.56 

Y 

KO 

K2 

Deviance 53.8 

- 5.41 - 7.23 

- 6.05 - 11.12 
(24.16) (15.09) 

(1 7.22) (6.98) 

4.60 6.64 
(74.37) (79.82) 

3.40 3.22 

3.07 
(5.85) 

168.2 162.3 

- 3.35 - 8.49 

- 5.21 

- 5.61 
(23.87) 

- 3.49 
(11.46) 

4.59 
(12.82) 

2.36 

- 175.7 

- 7.36 

- 9.22 
(20.8 1) 

(12.81) 

6.73 
(13.69) 

1.99 

3.41 
(6.33) 

169.4 

- 6.30 

which can also be written in terms of the marginal survivor functions, that is Pr[tij > y i j ]  = 
[exp( - A$)]. In this case 

An equivalent two-factor frailty model with normal components is also easily constructed. Of 
course, the marginal survivor function for this normal frailty model does not have a simple 
form. 

The three one-factor models all gave similar parameter estimates, with the LR chi-squares 
being larger for the normal frailty model than the MEV model, and for both marginal likelihood 
models being larger than those from the conditional model. The two two-factor mixture likeli- 
hood models both gave a significant improvement in fit over their one-factor versions. The 
parameter estimates from these two models were again very similar but were roughly twice the 
size of those obtained from the one-factor models. Allowing for the correlation in drug response 
at one and three hours after administration reduced the significance of the parameters estimating 
drug effects, the MEV model now giving more significant effects than the normal frailty model. 

9. DISCUSSION 

Our simulation study of models for multivariate survival data with univariate or one-factor frailty 
suggests that with multiple outcome measurements the choice of particular parametric frailty 
distribution is not critical for the estimation and testing of regression type coefficients. The 
tractable models that assume log-gamma or normal frailty performed well even in the presence of 
a substantial not-at-risk subgroup or stayers. Somewhat surprisingly, the mass point method, 
which had been considered to offer particular robustness, in fact did not perform well with the 
heavily censored data examined here. For data where univariate frailty is thought to be the 
dominant source of correlation in response times, computational convenience and the generality 
of the baseline hazard would seem to be more important criteria in a choice of model than the 
generality of the frailty distribution. 
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Although we have not undertaken any formal study, the example suggested that a more 
important choice that the parametric form of frailty is its dimensionality. This choice will also be 
fundamental where the frailty is not just a nuisance but of prime interest, as for example in genetic 
studies. As in the example, increasing the dimensionality allows different outcomes to be 
correlated with each other to differing degrees. It can also allow the conditions for non- 
identifiability, where scientifically necessary, to be met while still using finite mean frailty 
distributions. As discussed, finite mean frailty distributions can be identified from single-response 
data. Thus, to estimate just the frailty common across a set of responses, mixture likelihood 
models based on finite mean distributions must include at least bivariate frailty, allowing the 
estimation of response specific frailty as well as that common across responses. The addition of 
such complexity to finite mean frailty models makes the unfamiliar stable-law/MEV models look 
relatively more attractive. 

This review has not included approaches in which the frailty effects are of secondary import- 
ance to the analysis of multivariate survival data, for example the marginal model approaches of 
Huster et al.” and Liang et aLS2 Claytons3 contrasts random effects and marginal model 
approaches. 
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