TMA 4275 Lifetime analysis
 Exercise 1 - solution

Problem 1

a) The reliability, or survivor, function of an item is defined by(p. 17, eq. 2.2): $R(t)=1-F(t)=\operatorname{Pr}(T>t)$ for $t>0$. Two months without a failure means that $t=24 * 60$ (hours*days). Note that we need to calculate the time t in hours, since $z(t)$ is defined in hours for this exercise. Note also that $R(t)=e^{-\int_{0}^{t} z(u) d u}$ (p. 19, eq 2.9). Therefore:

$$
\begin{align*}
\operatorname{Pr}(T>24 \cdot 60)=R(1440)= & \\
& =\left.e^{-\int_{0}^{t} z(u) d u}\right|_{t=1440}= \\
& =\left.e^{-\left.(\lambda * u)\right|_{u=0} ^{u=t}}\right|_{t=1440}= \tag{1}\\
& =e^{-2 \cdot 5 \cdot 10^{-5} \cdot 24 \cdot 60}=0.9646
\end{align*}
$$

b) The mean time to failure of an object is given by $M T T F=\int_{0}^{\infty} R(t) d t$ (p.22 eq. 2.12). Therefore:

$$
\begin{align*}
\operatorname{MTTF}=\int_{0}^{\infty} R(t) d t= & \int_{0}^{\infty} e^{-\lambda t}=-\frac{1}{\lambda}\left(e^{-\lambda \infty}-e^{-\lambda 0}\right)= \tag{2}\\
& =\frac{1}{\lambda}=40000 \text { hours }
\end{align*}
$$

Because $e^{-\infty} \rightarrow 0$.
c) In other words we need to calculate $R(t)$ for $t=\mathrm{MTTF}$. That is:

$$
\begin{align*}
\operatorname{Pr}(T>M T T F)=R(M T T F)= & \\
& =e^{-\lambda M T T F}=e^{-\lambda M T T F}= \tag{3}\\
& =e^{-\lambda \frac{1}{\lambda}}=e^{-1}=0.9646
\end{align*}
$$

And e^{-1} does not depend on λ.

Problem 2

a) Constant failure rate means exponential failure function: $z(t)=\lambda$ (p.27 eq. 2.30). We also know that $\operatorname{Pr}(T>100)=0.5=R(100)$. Therefore, as in problem 1, we get:
$R(100)=\left.e^{-\int_{0}^{t} z(u) d u}\right|_{t=100}=e^{-\lambda \cdot 100}=0.5$. So that:
$-\lambda 100=\log (0.5) \Rightarrow \lambda=\frac{-\log (0.5)}{100}$ hours $^{-1}$
b) Like in problem 1a, we need to find the survivor function for $t=500$. Therefore: $R(500)=\operatorname{Pr}(T>500)=e^{-\lambda \cdot 500}=e^{5 \log (0.5)}=0.5^{5}=0.03$
c) Here we use the rule of conditional probabilities $\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}$. So that:

$$
\begin{aligned}
\operatorname{Pr}(T<1000 \mid T>500) & =1-\operatorname{Pr}(T>1000 \mid T>500) \\
& =1-\frac{\operatorname{Pr}(T>1000 \cap T>500)}{\operatorname{Pr}(T>500)} \\
& =1-\frac{\operatorname{Pr}(T>1000)}{\operatorname{Pr}(T>500)} \\
& =1-\frac{0.5^{10}}{0.5^{5}}=1-0.5^{5}=0.97
\end{aligned}
$$

Analogously:

$$
\begin{aligned}
\operatorname{Pr}(T<1000 \mid T>100) & =1-\frac{\operatorname{Pr}(T>1000)}{\operatorname{Pr}(T>100)} \\
& =1-\frac{0.5^{10}}{0.5}=1-0.5^{9}=0.99
\end{aligned}
$$

Where $\operatorname{Pr}(T>1000)$ and $\operatorname{Pr}(T>100)$ were calculated as in 2 b.

Problem 3

a) First we need to find the survivor function:
$R(t)=e^{-\int_{0}^{t} z(u) d u}=e^{-\left.k t\right|_{u=0} ^{u=t}}=e^{-\frac{1}{2} k t^{2}}$.
Then the probability that the component survives 200 hours is:
$\operatorname{Pr}(T>200)=R(200)=e^{-\frac{1}{2} 2 * 10^{-6} *(200)^{2}}=0.9608$.
b) As before, $M T T F=\int_{0}^{\infty} R(t) d t=\int_{0}^{\infty} e^{-\frac{1}{2} k t^{2}} d t=\frac{1}{2} \sqrt{\frac{2 \pi}{k}}=886$ hours.

Since $\int_{0}^{\infty} e^{-a x^{2}} d x=\frac{1}{2} \sqrt{\frac{\pi}{a}}$ for $a>0$.
c) This is the same as in problem 2c. So by using the same rule we get:

$$
\operatorname{Pr}(T>400 \mid T>200)=\frac{\operatorname{Pr}(T>400 \cap T>200)}{\operatorname{Pr}(T>200)}=\frac{\operatorname{Pr}(T>400)}{\operatorname{Pr}(T>200)}=\frac{R(400)}{R(200)}=0.8869
$$

Analogously

$$
\operatorname{Pr}(T>300 \mid T>100)=\frac{R(300)}{R(100)}=0.9231
$$

Where $R(t)$ can be calculated by 3 a.
d) The survivor function is of the form: $R(t)=e^{-(\lambda t)^{a}}$ for $\lambda=\sqrt{\frac{k}{2}}$ and $\alpha=2$. So this is Weibull distribution with shape parameter $\alpha=2$ and scale parameter $\lambda=\sqrt{\frac{k}{2}}(\mathrm{p} / 38$, eq 2.52).

Problem 4

a) Figure 1 shows the sketch of the failure function.

Figure 1: The failure rate function $z(t)$
b) We know that $f(t)=z(t) e^{-\int_{0}^{t} z(u) d u}$ for $t>0$ (p. 19 eq. 2.10). So that:

$$
\begin{aligned}
f(t)=z(t) e^{-\int_{0}^{t} z(u) d u}= & \\
& =\frac{t}{1+t} e^{-\int_{0}^{t} \frac{u}{1+u} d u} \\
& =\frac{t}{1+t} e^{-\int_{0}^{t}\left(1-\frac{1}{1+u}\right) d u} \\
& =\frac{t}{1+t} e^{-\left.(u-\log (1+u))\right|_{0} ^{t}} \\
& =\frac{t}{1+t} e^{-t+\log (1+t)}=\frac{t(1+t)}{1+t} e^{-t}=t e^{-t}
\end{aligned}
$$

c) We know that $R(t)=\int_{t}^{\infty} f(u) d u$ (p. 18, eq 2.3). Such that:

$$
\begin{aligned}
R(t)=\int_{t}^{\infty} f(u) d u= & \\
& =\int_{t}^{\infty} u e^{-u} d u \\
& =-\left.u e^{-u}\right|_{t} ^{\infty}+\int_{t}^{\infty} e^{-u} d u \\
& =-0+t e^{-t}+\left.e^{-u}\right|_{t} ^{\infty}=+t e^{-t}+0-e^{-t}=(1+t) e^{-t}
\end{aligned}
$$

Since $-u e^{-u} \rightarrow 0$ when $u \rightarrow \infty$ as e^{-u} goes faster to zero than $-u$ goes to $-\infty$. Accordingly:

$$
\begin{aligned}
M T T F=\int_{0}^{\infty} R(t) d t= & \\
& =\int_{0}^{\infty}(1+t) e^{-t} d t=\int_{0}^{\infty} e^{-t} d t+\int_{0}^{\infty} t e^{-t} d t= \\
& =-\left.e^{-t}\right|_{0} ^{\infty}-\left.t e^{-t}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-t} d t= \\
& =-0+1-0+0-\left.e^{-t}\right|_{0} ^{\infty}=1+0+1=2
\end{aligned}
$$

d) Note that $M T T F$ is of the form $M T T F=\frac{k}{\lambda}$, where $\lambda=1$ and $k=2$. This MTTF belongs to the Gamma with parameters $k=2$ and $\lambda=1$. Note also that this can be seen by the survivor function, although it is a little bit more difficult (p.34 eq. 2.43,2.45)

