TMA4275 LIFETIME ANALYSIS Slides 9: Parametric inference for the Weibull model

Bo Lindqvist Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim

https://www.ntnu.edu/employees/bo bo.lindqvist@ntnu.no

NTNU, Spring 2020

In Slides 9 we consider parametric statistical inference for lifetime distributions with two (or more) parameters. The Weibull-distribution is the example throughout, but most of the theory is valid for any lifetime distribution with two or more parameters.

- Likelihood analysis for Weibull distribution
 - Likelihood function
 - Maximum likelihood estimation
 - Profile log likelihood
 - Observed information and standard error
 - MINITAB output
 - Confidence intervals (CI)
 - Standard intervals for θ and α
 - Profile-log likelihood interval for α (the 1.92-interval)
 - Testing for exponential vs. Weibull distribution
 - Probability plotting for Weibull and exponential distribution

LIKELIHOOD FOR RIGHT CENSORED WEIBULL DATA

A lifetime T is distributed as Weibull(θ, α) if

$$f(t;\theta,\alpha) = \frac{\alpha}{\theta^{\alpha}} t^{\alpha-1} e^{-(\frac{t}{\theta})^{\alpha}}, \quad R(t;\theta,\alpha) = e^{-(\frac{t}{\theta})^{\alpha}}$$

The likelihood and log-likelihood for right censored data are hence given by

$$L(\theta, \alpha) = \prod_{i:\delta_i=1} \frac{\alpha}{\theta^{\alpha}} y_i^{\alpha-1} e^{-(\frac{y_i}{\theta})^{\alpha}} \prod_{i:\delta_i=0} e^{-(\frac{y_i}{\theta})^{\alpha}}$$

$$= \prod_{i:\delta_i=1} \frac{\alpha}{\theta^{\alpha}} y_i^{\alpha-1} \prod_{i=1}^n e^{-(\frac{y_i}{\theta})^{\alpha}}$$

$$= \frac{\alpha^r}{\theta^{r\alpha}} \Big(\prod_{i:\delta_i=1} y_i\Big)^{\alpha-1} e^{-\frac{1}{\theta^{\alpha}} \sum_{i=1}^n y_i^{\alpha}}$$

$$\ell(\theta, \alpha) = r \ln \alpha - \alpha r \ln \theta + (\alpha - 1) \sum_{i:\delta_i=1} \ln y_i - \frac{1}{\theta^{\alpha}} \sum_{i=1}^n y_i^{\alpha},$$

where $r = \sum_{i=1}^{n} \delta_i$ is the number of failures.

<ロ> <四> <ヨ> <ヨ>

MAXIMUM LIKELIHOOD ESTIMATION FOR WEIBULL

The maximum likelihood estimators $\hat{\theta}, \hat{\alpha}$ are found by solving the likelihood equations (two equations in two unknowns):

1.
$$\frac{\partial I(\theta, \alpha)}{\partial \theta} = -\frac{\alpha r}{\theta} + \frac{\alpha}{\theta^{\alpha+1}} \sum_{i=1}^{n} y_i^{\alpha} = 0$$

2.
$$\frac{\partial I(\theta, \alpha)}{\partial \alpha} = \frac{r}{\alpha} - r \ln \theta + \sum_{i=1}^{n} \delta_i \ln y_i - \sum_{i=1}^{n} \left(\frac{y_i}{\theta}\right)^{\alpha} \ln \left(\frac{y_i}{\theta}\right) = 0$$

We may for example solve eq. 1 for θ as a function of α and substitute this into eq. 2. From eq. 1 we get

$$\frac{\alpha r}{\theta} = \frac{\alpha}{\theta^{\alpha+1}} \sum_{i=1}^{n} y_i^{\alpha}$$
$$\theta^{\alpha} = \frac{\sum_{i=1}^{n} y_i^{\alpha}}{r}$$
$$\theta = \left(\frac{\sum_{i=1}^{n} y_i^{\alpha}}{r}\right)^{1/\alpha}$$

This is the maximum likelihood estimator of θ if the value of α is *known*. Denote it by

$$\hat{\theta}(\alpha) = \left(\frac{\sum_{i=1}^{n} y_i^{\alpha}}{r}\right)^{1/\alpha}.$$

If $\alpha = 1$, this is the MLE for the exponential model.

Recall from last slide that we can find $(\hat{\theta}, \hat{\alpha})$ by substituting $\hat{\theta}(\alpha)$ for θ into equation 2 and thereby get an equation with α as the only unknown.

The solution of this is $\hat{\alpha}$, while $\hat{\theta} = \hat{\theta}(\hat{\alpha})$ is finally the MLE of θ .

EXAMPLE WITH MINITAB-OUTPUT

Data (* means right censored observation): 0.35, 0.50*, 0.75*, 1.00, 1.30, 1.80, 3.00*, 3.15*, 4.85*, 5.50, 5.50*, 6.25*

Estimation Method: Maximum Likelihood Distribution: Weibull

Parameter Estimates

		Standard	95,0% N	lormal CI
Parameter	Estimate	Error	Lower	Upper
Shape	0,9780	0,3694	0,4665	2,0504
Scale				
	6,880	3,517	2,526	18,740

Log-Likelihood = -14,576

From this we estimate the mean time to failure by

$$\widehat{\mathsf{MTTF}} = \hat{ heta} \; \Gamma(\frac{1}{\hat{lpha}} + 1) = 6.88 \; \Gamma(\frac{1}{0.978} + 1) = 6.88 \Gamma(2.0225) = 6.9469$$

THE PROFILE LOG LIKELIHOOD FUNCTION FOR α

We may also use $\hat{\theta}(\alpha)$ in to obtain the so called *profile log likelihood* function for α .

We then substitute $\hat{\theta}(\alpha)$ into the log likelihood function $\ell(\theta, \alpha)$ to get

$$\tilde{\ell}(\alpha) = \ell(\hat{\theta}(\alpha), \alpha) \equiv \max_{\theta} \ell(\theta, \alpha).$$

Note that $\tilde{\ell}(1) = \ell(\hat{\theta}(1), 1)$ equals the maximum value of the log likelihood $\ell(\theta)$ for the exponential distribution.

For the Weibull case we compute $\tilde{\ell}(\alpha)$ as follows,

$$\tilde{\ell}(\alpha) = r \ln \alpha - \alpha r \ln \left[\left(\frac{\sum y_i^{\alpha}}{r} \right)^{1/\alpha} \right] + (\alpha - 1) \sum \delta_i \ln y_i - \frac{1}{\left(\frac{\sum y_i^{\alpha}}{r} \right)} \sum_{i=1}^n y_i^{\alpha}$$
$$= r \ln \alpha - \alpha r \frac{1}{\alpha} \ln(\sum y_i^{\alpha}) + \alpha r \frac{1}{\alpha} \ln r + (\alpha - 1) \sum \delta_i \ln y_i - r$$
$$= r \ln \alpha - r \ln(\sum y_i^{\alpha}) + r \ln r + (\alpha - 1) \sum \delta_i \ln y_i - r.$$

Data:

 $0.35, 0.50^*, 0.75^*, 1.00, 1.30, 1.80, 3.00^*, 3.15^*, 4.85^*, 5.50, 5.50^*, 6.25^*$

Graph of $\tilde{\ell}(\alpha)$. Maximum is at $\hat{\alpha} = 0.978$. From this, $\hat{\theta}$ is given as $\hat{\theta}(\hat{\alpha}) = 6.880$.

COMPUTATION OF STANDARD ERRORS OF $(\hat{\theta}, \hat{\alpha})$

Recall that for the case of a single parameter θ we defined the observed information $I(\hat{\theta}) = -\ell''(\hat{\theta})$ and obtained the estimator $Var(\hat{\theta}) = 1/I(\hat{\theta})$. In the case of two parameters (θ, α) we define the *observed information* **matrix** (also called *Hessian* matrix) to be

$$I(\hat{\theta}, \hat{\alpha}) =_{def} \begin{bmatrix} -\frac{\partial^2 I(\theta, \alpha)}{\partial \theta^2} & -\frac{\partial^2 I(\theta, \alpha)}{\partial \theta \partial \alpha} \\ -\frac{\partial^2 I(\theta, \alpha)}{\partial \alpha \partial \theta} & -\frac{\partial^2 I(\theta, \alpha)}{\partial \alpha^2} \end{bmatrix}_{\theta = \hat{\theta}, \alpha = \hat{\alpha}}$$

By the theory of maximum likelihood,

$$\left[I(\hat{\theta},\hat{\alpha})\right]^{-1} = \begin{bmatrix} \widehat{Var(\hat{\theta})} & \widehat{Cov(\hat{\theta},\hat{\alpha})} \\ \widehat{Cov(\hat{\alpha},\hat{\theta})} & \widehat{Var(\hat{\alpha})} \end{bmatrix}$$

Thus, by inverting the observed information matrix we get a matrix with the estimated variances of the parameters on the diagonal.

Standard errors, $\widehat{SD(\hat{\theta})}$ and $\widehat{SD(\hat{\alpha})}$, are computed by taking square roots, Bo Lindqvist Slides 9 TMA4275 LIFETIME ANALYSIS 9/17

CONFIDENCE INTERVALS FROM STANDARD ERRORS

The standard errors $SD(\hat{\theta})$ and $SD(\hat{\alpha})$ can be used to compute either standard confidence intervals or standard confidence intervals for positive parameters. The latter are given as

$$\hat{ heta} e^{\pm 1.96rac{\widehat{ ext{SD}}(\hat{ heta})}{\hat{ heta}}}, \qquad \hat{lpha} e^{\pm 1.96rac{\widehat{ ext{SD}}(\hat{lpha})}{\hat{lpha}}}$$

The inverse of the observed information matrix can also be used to compute standard errors and confidence intervals for quantities which involve both θ and α , e.g., MTTF, median and percentiles t_p . For this we need the covariance of $(\hat{\theta}, \hat{\alpha})$.

We will not do this in more detail, but MINITAB does the computations!

Exercise: Show that for Weibull(θ, α) we have

$$t_p = \theta(-\ln(1-p))^{1/\alpha}$$

MINITAB-OUTPUT FOR WEIBULL DATA EXAMPLE

Distribution: Weibull

```
Parameter Estimates
```

		Standard	95,0% No	rmal CI
Parameter	Estimate	Error	Lower	Upper
Shape	0,977997	0,369395	0,466481	2,05041
Scale	6,88032	3,51735	2,52615	18,7395

```
Log-Likelihood = -14,576
```

```
Goodness-of-Fit
Anderson-Darling (adjusted) = 30,049
```

Characteristics of Distribution

		Standard	95,0% No	ormal CI	
	Estimate	Error	Lower	Upper	
Mean (MTTF)	6,94720	4,20887	2,11895	22,7772	
Standard Deviation	7,10402	6,40851	1,21238	41,6265	
Median	4,72991	2,20169	1,89948	11,7780	
First Quartile(Q1)	1,92463	1,00544	0,691314	5,35822	
Third Quartile(Q3)	9,60850	5,56069	3,09060	29,8723	
Interquartile Range(IQR)	7,68386	5,24523	2,01616	29,2843	

< ロ > < 同 > < 回 > < 回 > < □ > <

LIKELIHOOD CONFIDENCE INTERVAL FOR α

The profile log likelihood $\tilde{\ell}(\alpha)$ can be used in the same manner as the log likelihood for a single parameter to obtain a confidence interval for α . This is because likelihood theory tells us that if α is the true parameter value,

$$W(\alpha) = 2\big(\tilde{\ell}(\hat{\alpha}) - \tilde{\ell}(\alpha)\big) = 2\big(\ell(\hat{\theta}, \hat{\alpha}) - \ell(\hat{\theta}(\alpha), \alpha)\big) \approx \chi_1^2$$

Here $\tilde{\ell}(\hat{\alpha}) = \ell(\hat{\theta}, \hat{\alpha})$ can be read off directly from the MINITAB output.

An approximate 95% confidence interval for α can be found in the example as the set of α for which $\tilde{\ell}(\alpha) \ge -14.58 - 1.92 = -16.50$ (which unfortunately is not covered by the graph on the earlier slide).

TESTING EXPONENTIAL VS. WEIBULL DISTRIBUTION

The result

$$W(\alpha) = 2(\tilde{\ell}(\hat{\alpha}) - \tilde{\ell}(\alpha)) \approx \chi_1^2$$

can be used to test whether the data come from an exponential distribution. This is done by testing

$$H_0: \alpha = 1$$
 vs. $H_1: \alpha \neq 1$,

and using the following test statistic:

$$W(1) = 2 (\tilde{\ell}(\hat{lpha}) - \tilde{\ell}(1))$$

which is approximately χ_1^2 if the null hypothesis is true. Hence we reject the null hypothesis at 5% significance level if $W(1) \ge 3.84$. Note that

$$W(1) = 2 \Big[\underbrace{\ell(\hat{\theta}, \hat{\alpha})}_{\text{max value in Weibull model}} - \underbrace{\ell(\hat{\theta}(1), 1)}_{\text{max value in exponential model}} \Big]$$

where we can find the two maxima in the Minitab output for, respectively, Weibull-distribution and exponential distribution. In the present case we get $I(\hat{\theta}, \hat{\alpha}) = -14.576$, and $I(\hat{\theta}(1), 1) = -14.577$. Thus, W(1) = 2(-14.576 - (-14.577)) = 0.002 and we do not reject H_0 . The second second

PROBABILITY PLOT FOR WEIBULL-DISTRIBUTION

Suppose
$$T \sim \text{Weibull}(\theta, \alpha)$$
, so that $R(t) = e^{-\left(\frac{t}{\theta}\right)^{\alpha}}$. Then
 $-\ln R(t) = \left(\frac{t}{\theta}\right)^{\alpha}$
 $\ln(-\ln R(t)) = \alpha \ln t - \alpha \ln \theta$.

Thus, for any t, the point

$$(\ln t, \ln(-\ln R(t)))$$

is on the line

$$y = \alpha x - \alpha \ln \theta$$

in the (x, y) coordinate system. Thus α is the slope of the line, while $-\alpha \ln \theta$ is the intercept.

PROBABILITY PLOT FOR WEIBULL-DISTRIBUTION (CONT.)

Suppose we have right-censored data $(y_1, \delta_1), \ldots, (y_n, \delta_n)$, where $t_{(1)} < \ldots < t_{(k)}$ are the observed *failure* times (i.e. uncensored times). Then we can compute the Kaplan-Meier estimator $\hat{R}(t)$ for R(t).

The Weibull probability plot is a plot of the points

$$(\ln t_{(i)}, \ln(-\ln \hat{R}(t_{(i)})))$$

in the (x, y) coordinate system.

If the Weibull model is the correct one, then these points will tend to be close to a straight line since $\hat{R}(t)$ then is supposed to be close to the underlying Weibull survival function.

In practice is often used a modified KM-estimator,

$$\hat{\hat{R}}(t_{(i)}) = rac{\hat{R}(t_{(i)}) + \hat{R}(t_{(i-1)})}{2}.$$

This gives a somewhat more "smooth" KM-curve, and avoids In 0.

MINITAB WEIBULL PROBABILITY PLOT

Minitab plots the points $(\ln t_{(i)}, \ln(-\ln \hat{R}(t_{(i)})))$ together with the straight line $y = \hat{\alpha}x - \hat{\alpha} \ln \hat{\theta}$. Note that the scales on the axis are displayed on log-scale (x-axis) and log(-log)-scale (y-axis). The KM-estimate used by MINITAB is close to the estimator on the previous slide. MINTAB also computes 95% confidence bounds for the line.

Bo Lindqvist

MINITAB EXPONENTIAL PROBABILITY PLOT

Minitab here plots exactly the same points as for the Weibull plot, but since $\alpha = 1$ is known, the line to compare with is $y = x - \ln \hat{\theta}$, where $\hat{\theta}$ is the estimate of θ obtained from the exponential model.

The 95% confidence bounds are also different, since α is known.

Bo Lindqvist