TMA4275 LIFETIME ANALYSIS

Slides 6: Nelson-Aalen estimator, exponential distribution, TTT-plot, logrank test

Bo Lindqvist
Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim

> https://www.ntnu.edu/employees/bo bo.lindqvist@ntnu.no

NTNU, Spring 2020

- Nonparametric estimation of $Z(t)$: The Nelson-Aalen estimator
- Motivation from KM-estimator
- Motivation from "scratch" using exponential distribution
- Properties of the exponential distribution
- Memoryless property
- Property of transformations etc
- $Z(T)$ is exponentially distributed
- The homogeneous Poisson-process
- Total time on test (TTT)
- TTT-plot, uncensored data
- TTT-plot, right censored data
- Barlow-Proschan's test for exponentiality
- Nonparametric comparison of reliabilty/survival functions
- The logrank test

Note first that $Z^{\prime}(t)=z(t)$. Thus,

- T is IFR $\Leftrightarrow z(t)$ is increasing $\Leftrightarrow Z(t)$ is convex
- T is DFR $\Leftrightarrow z(t)$ is decreasing $\Leftrightarrow Z(t)$ is concave

Thus a plot of an estimate $\hat{Z}(t)$ can give us information on whether the distribution of T is IFR (increasing failure rate) or DFR (decreasing failure rate).

ESTIMATING $Z(t)$ BY THE KM-ESTIMATOR

Recall that $R(t)=e^{-Z(t)}$, so

$$
Z(t)=-\ln R(t)
$$

Thus, if $\hat{R}_{K M}(t)$ is the KM-estimator for $R(t)$, then we can define,

$$
\begin{aligned}
\hat{Z}_{K M}(t) & =-\ln \hat{R}_{K M}(t) \\
& =-\ln \prod_{T_{(i)} \leq t} \frac{n_{i}-d_{i}}{n_{i}} \\
& =-\sum_{T_{(i)} \leq t} \ln \left(1-\frac{d_{i}}{n_{i}}\right) \\
& \approx \sum_{T_{(i)} \leq t} \frac{d_{i}}{n_{i}}
\end{aligned}
$$

where we used that for small x is

$$
-\ln (1-x) \approx x
$$

The Nelson-Aalen estimator (NA-estimator) is simply defined by

$$
\hat{Z}_{N A}(t)=\sum_{T_{(i)} \leq t} \frac{d_{i}}{n_{i}}
$$

It can then be shown that its variance can be estimated by

$$
\left.\operatorname{Var} \widehat{\left(\hat{Z}_{N A}(t)\right.}\right)=\sum_{T_{(i)} \leq t} \frac{d_{i}}{n_{i}^{2}}
$$

Note: The Nelson-Aalen estimator is not included in MINITAB (only "hazard plot" which is in fact not correct). For this course has been made a MINITAB Macro (see MINITAB Macros on the Software webpage).

In the following we shall have a closer look at how the Nelson-Aalen estimator can be motivated from properties of the exponential distribution.

EXAMPLE: NELSON-AALEN ESTIMATOR

1	31,7	1
2	39,2	1
3	57,5	1
4	65,0	0
5	65,8	1
6	70,0	1
7	75,0	0
8	75,2	0
9	87,5	0
10	88,3	0
11	94,2	0
12	101,7	0
13	105,8	1
14	109,2	0
15	110,0	1
16	130,0	0

Row

Numb at risk
1/Numb at risk Cum Haz Nelson Survival Nelson
31,7
0,062500
0,066667
0,071429
0,083333
0,090909
0,250000
0,500000

0,06250	0,939413
0,12917	0,878827
0,20060	0,818244
0,28393	0,752820
0,37484	0,687401
0,62484	0,535348
1,12484	0,324705

Nelson Plot

GENERAL THEORY: RESIDUAL LIFETIME

Suppose an item with lifetime T is still alive at time s. The probability of surviving an additional t time is then

$$
\begin{aligned}
R(t \mid s) & \equiv P(T>s+t \mid T>s) \\
& =\frac{P(T>s+t \cap T>s)}{P(T>s)} \\
& =\frac{R(s+t)}{R(s)}
\end{aligned}
$$

This is called the conditional survival function of the item, or the distribution of the residual life for an item at age s. The following is its expectation, called Mean Residual Life:

$$
\begin{aligned}
\operatorname{MRL}(s) & =\int_{0}^{\infty} R(t \mid s) d t=\int_{0}^{\infty} \frac{R(s+t)}{R(s)} d t \\
& =\frac{1}{R(s)} \int_{s}^{\infty} R(t) d t
\end{aligned}
$$

1. The memoryless property

Write $T \sim \operatorname{expon}(\lambda)$ if $f(t)=\lambda e^{-\lambda t} ; R(t)=P(T>t)=e^{-\lambda t}, t>0$.
For $T \sim \operatorname{expon}(\lambda)$ we therefore have

$$
R(t \mid s)=P(T>s+t \mid T>s)=\frac{R(s+t)}{R(s)}=\frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}=e^{-\lambda t}=R(t)
$$

Thus: For any age s, the remaining life has the same distribution as the lifetime distribution of a new item.

This is called the memoryless property of the exponential distribution.
2. Let $T \sim \operatorname{expon}(\lambda)$ and let $W=a T$. Then $W \sim \operatorname{expon}(\lambda / a)$. Proof:

$$
P(W>w)=P(a T>w)=P\left(T>\frac{w}{a}\right)=e^{-\left(\frac{\lambda}{a}\right) w}
$$

3. Let T_{i} for $i=1, \ldots, n$ be independent, with $T_{i} \sim \operatorname{expon}\left(\lambda_{i}\right)$. Let $W=\min \left(T_{1}, \ldots, T_{n}\right)$.. Then $W \sim \operatorname{expon}\left(\sum_{i=1}^{n} \lambda_{i}\right)$.
Proof:

$$
\begin{aligned}
P(W>w) & =P\left(\min \left(T_{1}, \cdots, T_{n}\right)>w\right) \\
& =P\left(T_{1}>w, T_{2}>w, \cdots, T_{n}>w\right) \\
& =P\left(T_{1}>w\right) P\left(T_{2}>w\right) \cdots P\left(T_{n}>w\right) \\
& =e^{-\left(\lambda_{1}+\cdots+\lambda_{n}\right) w},
\end{aligned}
$$

so $W \sim \operatorname{expon}\left(\lambda_{1}+\cdots+\lambda_{n}\right)$
4. In particular if T_{1}, \ldots, T_{n} are independent each with distribution expon (λ), then

$$
W=\min \left(T_{1}, \ldots, T_{n}\right) \sim \operatorname{expon}(n \lambda)
$$

So a series system of n components with lifetimes that are independent and exponentially distributed with hazard rate λ, has a lifetime which is exponenital with hazard rate $n \lambda$ and hence

$$
\text { MTTF }=\frac{1}{n \lambda}=\frac{\text { Component MTTF }}{n}
$$

5. Let T_{1}, \ldots, T_{n} be independent each with distribution expon (λ). Let the ordering of these be

$$
T_{(1)}<T_{(2)}<\cdots<T_{(n)}
$$

Then

$$
\begin{gathered}
n T_{(1)} \\
(n-1)\left(T_{(2)}-T_{(1)}\right) \\
(n-2)\left(T_{(3)}-T_{(2)}\right) \\
\vdots \\
(n-i+1)\left(T_{(i)}-T_{(i-1)}\right) \\
\vdots \\
\left(T_{(n)}-T_{(n-1)}\right)
\end{gathered}
$$

are independent and identically distributed as expon (λ).

5b. Let T_{1}, \ldots, T_{n} be independent each with distribution expon (λ). Let the ordering of these be

$$
T_{(1)}<T_{(2)}<\cdots<T_{(n)}
$$

Then

$$
\begin{aligned}
T_{(1)} & \sim \operatorname{expon}(n \lambda) \\
T_{(2)}-T_{(1)} & \sim \operatorname{expon}((n-1) \lambda) \\
T_{(3)}-T_{(2)} & \sim \operatorname{expon}((n-2) \lambda) \\
& \vdots \\
T_{(i)}-T_{(i-1)} & \sim \operatorname{expon}((n-i+1) \lambda) \\
\vdots & \\
T_{(n)}-T_{(n-1)} & \sim \operatorname{expon}(\lambda)
\end{aligned}
$$

are independent with the displayed exponential distributions.

PROOF OF PROPERTIES 5 AND 5b

Proof of $5 b$: Let n units with lifetime expon (λ) be put on test at time 0 . Hence $T_{(1)}=\min \left(T_{1}, \ldots, T_{n}\right)$, so by property $4, T_{(1)} \sim \operatorname{expon}(n \lambda)$.
After time $T_{(1)}$ there are $n-1$ unfailed units. At time $s=T_{(1)}$ each of these has by property 1 a remaining lifetime which is expon (λ). Thus $T_{(2)}-T_{(1)}$ is distributed as the minimum of $n-1$ expon (λ) variables and hence is expon $((n-1) \lambda)$. That $T_{(2)}-T_{(1)}$ is independent of $T_{(1)}$ follows from property 1 which says that, for the exponential distribution, the distribution of the remaining lifetime is the same whatever be the age of the item.
This reasoning can be continued at time $T_{(2)}$ in an obvious fashion, and we finish by concluding that $T_{(n)}-T_{(n-1)}$ is expon (λ).

Proof of 5: To go from 5b to 5, we use the earlier ${ }^{-}$property 2 .

A USEFUL RESULT

Consider lifetime T with given cumulative hazard function $Z(t)$. After we observe T, we may compute $Z(T)$, which is hence a random variable since T is a random variable. The following result says that this random variable is exponentially distributed with parameter 1, whatever be the distribution of T. The important point is of course that it is T 's own $Z(t)$ that is used to transform T.

Proof: Recall that $Z(t)=-\ln R(t)$ and $R(t)=P(T>t)$. Thus we have:

$$
\begin{aligned}
P(Z(T)>z) & =P(-\ln R(T)>z)=P(\ln R(T)<-z) \\
& =P\left(R(T)<e^{-z}\right)=P\left(T>R^{-1}\left(e^{-z}\right)\right) \\
& =R\left(R^{-1}\left(e^{-z}\right)\right)=e^{-z}
\end{aligned}
$$

so $Z(T) \sim \operatorname{expon}(1)$. Here we used that $R(t)$ is decreasing and hence has a decreasing inverse function R^{-1}.

- Suppose $T \sim \operatorname{expon}(\lambda)$. Then $z(t)=\lambda$ and $Z(t)=\lambda t$. Thus the result says that $Z(T)=\lambda T \sim \operatorname{expon}(1)$. But this also follows from the previous Property 2 for the exponential distribution.
- Suppose then $T \sim \operatorname{Weibull}(\alpha, \theta)$, so that $Z(t)=\left(\frac{t}{\theta}\right)^{\alpha}$. Then

$$
Z(T)=\left(\frac{T}{\theta}\right)^{\alpha}
$$

SO

$$
\begin{aligned}
P(Z(T)>z) & =P\left(\left(\frac{T}{\theta}\right)^{\alpha}>z\right)=P\left(\frac{T}{\theta}>z^{1 / \alpha}\right) \\
& =P\left(T>\theta z^{1 / \alpha}\right)=R\left(\theta z^{1 / \alpha}\right) \\
& =e^{-\left(\frac{\theta z^{1 / \alpha}}{\theta}\right)^{\alpha}}=e^{-z}
\end{aligned}
$$

i.e. $Z(T) \sim \operatorname{expon}(1)$.

Write the result as

$$
Z(T)=\int_{0}^{T} z(u) d u=V
$$

where $V \sim \operatorname{expon}(1)$.
If we think of V as "given" to us at birth, drawn from an
expon(1)-distribution, then our lifetime T is determined by the behavior of the hazard function $z(t)$. Thus the lifetime will be longer if we are able to reduce our hazard throughout life.

The result can also be used to simulate lifetimes T_{1}, \ldots, T_{n} for a sample of units: Draw independent expon(1)-variables V_{1}, \ldots, V_{n} and compute the corresponding T_{i} as

$$
T_{i}=Z^{-1}\left(V_{i}\right), \quad i=1, \ldots, n
$$

NELSON-AALEN PLOT: NONCENSORED DATA

Suppose data are n independent observations T_{1}, \ldots, T_{n} of the lifetime T with cumulative hazard function $Z(t)$, with no censored observations. Then $Z\left(T_{1}\right), \ldots, Z\left(T_{n}\right)$ are i.i.d. expon(1), and from figure:

Nelson: For noncensored data, estimate the function $Z(t)$ by letting

$$
\hat{Z}\left(T_{(i)}\right)=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{n-i+1} \quad \text { for } i=1,2, \ldots, n
$$

(and let $\hat{Z}(t)$ be constant between observations).

Let $T_{(1)}<T_{(2)}<\cdots$ be the observed failure times.
Assume that the censored observations are always deleted from the data in the immediate beginning of each interval $\left(T_{(i-1)}, T_{(i)}\right)$, and let n_{i} be the number at risk after deletion of the censored ones.

Nelson-Aalen: Estimate the function $Z(t)$ by letting

$$
\hat{Z}\left(T_{(i)}\right)=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\cdots+\frac{1}{n_{i}} \quad \text { for } i=1,2, \ldots
$$

(and let $\hat{Z}(t)$ be constant between observations).
n components are put on test at time $t=0$ and observed until failure.
Let $\mathcal{T}(t)=$ Total Time on Test at time t.

$Y_{1}=\mathcal{T}\left(T_{(1)}\right)=n T_{(1)}$
$Y_{2}=\mathcal{T}\left(T_{(2)}\right)=\mathcal{T}\left(T_{(1)}\right)+(n-1)\left(T_{(2)}-T_{(1)}\right)=T_{(1)}+(n-1) T_{(2)}$
\vdots
$Y_{i}=\mathcal{T}\left(T_{(i)}\right)=\mathcal{T}\left(T_{(i-1)}\right)+(n-i+1)\left(T_{(i)}-T_{(i-1)}\right)$
$=T_{(1)}+T_{(2)}+\cdots+T_{(i-1)}+(n-i+1) T_{(i)}$
$Y_{n}=\mathcal{T}\left(T_{(n)}\right)=\mathcal{T}\left(T_{(n-1)}\right)+\left(T_{(n)}-T_{(n-1)}\right)=T_{(1)}+T_{(2)}+\cdots+T_{(n)}$

Recall:

- n components are put on test at time $t=0$ and observed until failure.
- $\mathcal{T}(t)=$ Total Time on Test at time t.

A non-normalized TTT-plot would be a plot of the points

$$
\left(i, \mathcal{T}\left(T_{(i)}\right)\right), i=1, \cdots, n
$$

The convention is, however, to plot the points

$$
\left(\frac{i}{n}, \frac{\mathcal{T}\left(T_{(i)}\right)}{\mathcal{T}\left(T_{(n)}\right)}\right) \quad \text { or } \quad\left(\frac{i}{n}, \frac{Y_{i}}{Y_{n}}\right), \quad \text { for } i=1,2, \ldots, n
$$

The last point is thus $(1,1)$, so this plot is always in the unit square.

Recall definition of TTT-plot: Plot the points

$$
\left(\frac{i}{n}, \frac{Y_{i}}{Y_{n}}\right) \text { for } i=1,2, \ldots, n
$$

where $Y_{i}=\mathcal{T}\left(T_{(i)}\right)$ is total time on test until $T_{(i)}$.

EXAMPLE: TTT-plot

$n=10 ;$ uncensored observations $T_{(1)}, \ldots, T_{(10)}$.

Row	Time	TTT interval	TTT cum	i/n	TTT
1	6,3	$10 * 6,3=63,0$	63,0	0,1	0,05943
2	11,0	$9 * 4,7=42,3$	105,3	0,2	0,09934
3	21,5	$8 * 10,5=84,0$	189,3	0,3	0,17858
4	48,4	$7 * 27,9=188,3$	377,6	0,4	0,35623
5	90,1	$6 * 41,7=250,2$	627,8	0,5	0,59226
6	120,2	$5 * 30,1=150,5$	778,3	0,6	0,73425
7	163,0	$4 * 42,8=171,2$	949,5	0,7	0,89575
8	182,5	$3 * 19,5=58,5$	1008,0	0,8	0,95094
9	198,0	$2 * 15,5=31,0$	1039,0	0,9	0,98019
10	219,0	$1 * 21,0=21,0$	1060,0	1,0	1,00000

EXAMPLE: TTT-plot

TTT plot

Recall that if T_{1}, \ldots, T_{n} are expon (λ), then

$$
(n-i+1)\left(T_{(i)}-T_{(i-1)}\right) \sim \operatorname{expon}(\lambda)
$$

so

$$
E\left(Y_{i}\right)=E\left(\mathcal{T}\left(T_{(i)}\right)\right)=i(1 / \lambda)=i / \lambda \text { for } i=1, \ldots, n
$$

so

$$
E\left(\frac{Y_{i}}{Y_{n}}\right) \approx \frac{i / \lambda}{n / \lambda}=\frac{i}{n}
$$

so the TTT-plot is approximately a plot of $(i / n, i / n)$ which are on the diagonal of the square defined by the TTT-plot.

SHAPES OF TTT-PLOTS

Exponential

IFR

DFR

Bathtub

IFR: Concave shape. The first lifetimes are generally longer than expected from an exponential distribution, while the last ones are shorter.
DFR: Convex shape. The first lifetimes are generally shorter than expected from an exponential distribution, while the last ones are longer.
Bathtub: S-shaped, i.e. convex (DFR) in the beginning and concave (IFR) at the end.

BALL BEARINGS FAILURE DATA

TTT plot

Definition: Let $N(s, t)=$ number of events in $(s, t]$
(1) $P(N(t, t+h)=1)=\lambda h+o(h) \approx \lambda h$
(2) $P(N(t, t+h) \geq 2)=o(h) \approx 0$
(3) For disjoint intervals $\left(s_{1}, t_{1}\right],\left(s_{2}, t_{2}\right], \ldots$, the counts $N\left(s_{1}, t_{1}\right], N\left(s_{2}, t_{2}\right], \ldots$ are independent random variables.

It can be shown that:

- $N(s, t)$ is Poisson $(\lambda(t-s))$ so $E[N(s, t)]=\lambda(t-s)$
λ is called the intensity of the process.

- Times between events are independent and distributed as expon (λ).
- The time to the k th event $(k=1,2, \ldots)$ is gamma-distributed with pdf and reliability function given by, respectively,

$$
\begin{gathered}
f(t)=\frac{\lambda(\lambda t)^{k-1} e^{-\lambda t}}{(k-1)!} \text { for } t>0 \\
R(t)=P\left(S_{k}>t\right)={ }_{(*)} P(N(t) \leq k-1)=\sum_{x=0}^{k-1} \frac{(\lambda t)^{x}}{x!} e^{-\lambda t}
\end{gathered}
$$

$\left(^{*}\right)$ See time point t in figure.

MORE ON THE HOMOGENEOUS POISSON PROCESS

RESULT 1:

Let the HPP start at time $t=0$ and continue until a given number n events have occurrred. Then, given the value $S_{n}=s_{n}$, the event times S_{1}, \ldots, S_{n-1} are distributed as the ordering of $n-1$ i.i.d. variables from the distribution $U\left[0, s_{n}\right]$, i.e. the uniform distribution on the interval from 0 to s_{n}.

MORE ON THE HOMOGENEOUS POISSON PROCESS

RESULT 2:

Let the HPP start at time $t=0$ and continue until a given time τ. Let N denote the number of events that have occurrred until time τ (this is a random number). Then, given the value $N=n$, the event times S_{1}, \ldots, S_{n} are distributed as the ordering of n i.i.d. variables from the distribution $U[0, \tau]$, i.e. the uniform distribution on the interval from 0 to τ.

Suppose T_{1}, \ldots, T_{n} are distributed as expon (λ). Then Y_{1}, Y_{2}, \ldots behaves like an HPP with intensity λ (called $\operatorname{HPP}(\lambda)$), by result 5. By Result 1:

- Given the value $Y_{n}=y_{n}$, the $\left(Y_{1}, \ldots, Y_{n-1}\right)$ are distributed as the ordering of $n-1$ i.i.d. $U\left[0, y_{n}\right]$.
- Hence, given the value $Y_{n}=y_{n}$, the $\left(Y_{1} / y_{n}, \ldots, Y_{n-1} / y_{n}\right)$ are distributed as the ordering of $n-1$ i.i.d. $U[0,1]$.
- Since the latter distribution does not depend on y_{n}, the $\left(Y_{1} / Y_{n}, \ldots, Y_{n-1} / Y_{n}\right)$ are distributed as the ordering of $n-1$ i.i.d. $U[0,1]$.

Recall: The $\left(\frac{Y_{1}}{Y_{n}}, \ldots, \frac{Y_{n-1}}{Y_{n}}\right)$ are distributed as the ordering of $n-1$ i.i.d. $U[0,1]$.

From this can be shown that we have, under exponentiality, exactly:

$$
E\left(\frac{Y_{i}}{Y_{n}}\right)=\frac{i}{n}, \quad \text { for } i=1, \ldots, n-1
$$

(we concluded only \approx earlier).

BARLOW-PROSCHAN'S TEST FOR EXPONENTIALITY

One is often not satisfied with just looking at plots to determine distributions. Assume we want to formally test
H_{0} : $T \sim \operatorname{expon}(\lambda)$ for some unspecified λ
versus H_{1} : (either of) $\begin{cases}T & \text { has IFR } \\ T & \text { has DFR } \\ T & \text { has monotone failure rate }\end{cases}$
Suppose T_{1}, \cdots, T_{n} is complete data set, i.e. no censorings.
The test statistic of Barlow-Proschan's test is

$$
W=\frac{Y_{1}}{Y_{n}}+\frac{Y_{2}}{Y_{n}}+\cdot+\frac{Y_{n-1}}{Y_{n}}=\frac{\mathcal{T}\left(T_{(1)}\right)}{\mathcal{T}\left(T_{(n)}\right)}+\cdots+\frac{\mathcal{T}\left(T_{(n-1)}\right)}{\mathcal{T}\left(T_{(n)}\right)}
$$

$$
W=\frac{Y_{1}}{Y_{n}}+\frac{Y_{2}}{Y_{n}}+\cdot+\frac{Y_{n-1}}{Y_{n}}
$$

When compared to the exponential distribution:

- W becomes "too large" if distribution is IFR
- W becomes "too small" if distribution is DFR

BARLOW-PROSCHAN'S TEST FOR EXPONENTIALITY

Thus: The null hypothesis H_{0} of exponential distributon should be rejected if W is either much larger or much smaller than what should be expected from exponentially distributed lifetimes.

We therefore need the distribution of W when $T_{1}, \ldots, T_{n} \sim \operatorname{expon}(\lambda)$.
We know already:

$$
\frac{Y_{1}}{Y_{n}}, \cdots, \frac{Y_{n-1}}{Y_{n}}
$$

are distributed as the ordering of $n-1$ independent $U[0,1]$-variables, so:

- $W=$ sum of $n-1$ independent $U[0,1]$-variables
- $E(W)=(n-1) / 2$
- $\operatorname{Var}(W)=(n-1) / 12$

Thus by the Central Limit Theorem, W is approximately normal:

$$
W \approx N\left(\frac{n-1}{2}, \frac{n-1}{12}\right) \text { when lifetimes are exponential }
$$

BARLOW-PROSCHAN'S TEST FOR EXPONENTIALITY

Recall:

$$
W=\frac{Y_{1}}{Y_{n}}+\frac{Y_{2}}{Y_{n}}+\cdots+\frac{Y_{n-1}}{Y_{n}} \approx N\left(\frac{n-1}{2}, \frac{n-1}{12}\right)
$$

Thus we compute

$$
Z=\frac{W-\frac{n-1}{2}}{\sqrt{\frac{n-1}{12}}}
$$

which is $\approx N(0,1)$ under H_{0}.
Tests with level α : Let T_{1}, \cdots, T_{n} be a complete sample of T.

$$
H_{0}: T \sim \operatorname{expon}(\lambda)
$$

versus $H_{1}:\left\{\begin{array}{l}T \text { is IFR: Reject if } Z \geq z_{\alpha} \\ T \text { is DFR: Reject if } Z \leq-z_{\alpha} \\ T \text { has monotone hazard: Reject if } Z \leq-z_{\alpha / 2} \text { or } Z \geq z_{\alpha / 2}\end{array}\right.$

CRITICAL VALUES OF NORMAL DISTRIBUTION

TABLE 4

Critical Values of Standard Normal Distribution

A ONE-TAILE STUATIONS

The entries in this table are the critical values for z for which the area under the curve representing α is in the right-hand tail. Critical values for the left-hand tail are found by symmetry.

				Amount of α in one tril				
α	0.25	0.10	0.05	0.025	0.02	0.01	0.005	One-tailed example:$\begin{aligned} & \alpha=0.05 \\ & z(\alpha)=z[0.05]=1.65 \end{aligned}$
$z\|\alpha\|$	0.67	1.28	1.65	1.96	2.05	2.33	2.58	

B TWO-TAILED STUUAIONS

The entries in this table are the critical values for z for which the area under the curve representing α is split equally between the two tails.

Amount of α in two tots							Two-tailed example:$\begin{aligned} & \alpha=0.05 \text { or } 1-\alpha=0.95 \\ & \alpha / 2=0.025 \\ & z(\alpha / 2)=z(0.025)=1.96 \end{aligned}$
α	0.25	0.20	0.10	0.05	0.02	0.01	
2 $1 \times / 2$ \|	1.15	1.28	1.65	1.96	2.33	2.58	
$1-\alpha$	0.75	0.80	0.90	0.95	0.98	0.99	
Arsa in the "center"							

Row	Time	TTT interval	TTT cum	i/n	TTT	
1	6,3	$10 * 6,3=63,0$	63,0	0,1	0,05943	
2	11,0	$9 * 4,7=$	42,3	105,3	0,2	0,09934
3	21,5	$8 * 10,5=$	84,0	189,3	0,3	0,17858
4	48,4	$7 * 27,9=188,3$	377,6	0,4	0,35623	
5	90,1	$6 * 41,7=250,2$	627,8	0,5	0,59226	
6	120,2	$5 * 30,1=150,5$	778,3	0,6	0,73425	
7	163,0	$4 * 42,8=171,2$	949,5	0,7	0,89575	
8	182,5	$3 * 19,5=$	58,5	1008,0	0,8	0,95094
9	198,0	$2 * 15,5=$	31,0	1039,0	0,9	0,98019
10	219,0	$1 * 21,0=$	21,0	1060,0	1,0	1,00000

Here W is the sum of the last column, except the last " 1 ". We have $W=4.847$ and

$$
Z=\frac{4.847-\frac{9}{2}}{\sqrt{\frac{9}{12}}}=0.401
$$

so we do not reject at $\alpha=0.05$, for example.

EXAMPLE OF BP TEST: BALL-BEARING DATA

BALL BEARINGS FAILURE DATA

TTT plot

Use of Macro from course web page: $W=15.648, n=23$, so

$$
Z=\frac{15.648-11}{\sqrt{\frac{22}{12}}}=3.4328
$$

and we reject (at any reasonable significance level) a test of H_{0} : exponential distribution versus H_{1} : IFR distribution.

Let $T_{(1)}<T_{(2)}<\cdots<T_{(k)}$ be the observed failure times.
Assume that the censored observations are always deleted from the data in the immediate beginning of each interval $\left(T_{(i-1)}, T_{(i)}\right)$, and let n_{i} be the number at risk after deletion of the censored ones.

Then Y_{1}, Y_{2}, \ldots is still a HPP when lifetimes are exponential,

On the previous slide, the censored observations contribute to the Total Time on Test only in the intervals strictly before the ones where they are censored.

An improvement of the method is to let the censored observations contribute also in the interval where they are censored, but only up to the time they are censored.

This means in practice that we compute the TTT as for the noncensored case, but we let only the failure times be recorded as the event times Y_{1}, \ldots, Y_{k}, and we plot

$$
\left(\frac{i}{k}, \frac{Y_{i}}{Y_{k}}\right), \text { for } i=1, \ldots, k
$$

TTT-plot censored data

Assume first two groups:
Group 1: Control group, lifetime T_{1}, with $R_{1}(t)=P\left(T_{1}>t\right)$
Group 2: Treatment group, lifetime T_{2}, with $R_{2}(t)=P\left(T_{2}>t\right)$

Want to test:

$$
H_{0}: R_{1}(t)=R_{2}(t) \quad \text { for all } \quad t
$$

(i.e. no difference between groups)

$$
\text { vs } H_{1}: R_{1}(t) \neq R_{2}(t) \text { for at least one } t
$$

Graphical solution: Look at KM-Plots

EXAMPLE: LEUKEMIA DATA

Comparing two groups:

6-Mercaptopurine in Acute Leukemia

The 6-Mercaptopurine in Acute Leukemia trial

- Conducted in 1959-1960
- Patients had undergone corticosteroid therapy for acute leukemia
- 6-Mercaptopurine versus placebo
- Outcome: length of complete remission (weeks)
- Subjects entered in pairs and followed until at least one member of each pair relapsed.
- Stopped after 21 pairs of subjects were entered

Outcomes ("+"=censored):

- 6-MP: $6+, 6,6,6,7,9+, 10+, 10,11+, 13,16,17+, 19+, 20+, 22,23,25+, 32+, 32+, 34+$, $35+$
- Placebo: 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

EXAMPLE: LEUKEMIA DATA

Group 1=Placebo (control), Group $2=6 \mathrm{MP}$

EXAMPLE: LEUKEMIA DATA

Group 1=Placebo (control), Group $2=6 \mathrm{MP}$ (with 95% confidence intervals)

Nonparametric Survival Plot for T
Kaplan-Meier Method - 95\% CI
Censoring Column in C

Group	
1	
--	2
Table	of Statistics
Mean	Median IQR
8,6667	88
17,9092	$23 *$

Formal testing can be done by

- The Logrank Test
- Mantel-Haenszel Test

A simple version is to compute a χ^{2}-statistic of the form

$$
V=\frac{\left(O_{1}-E_{1}\right)^{2}}{E_{1}}+\frac{\left(O_{2}-E_{2}\right)^{2}}{E_{2}}
$$

where

- O_{1}, O_{2} are observed \# failures of the two groups
- E_{1}, E_{2} are expected \# failures if the survival functions are equal.
- Note that $O_{1}+O_{2}=$ total number of failures $=E_{1}+E_{2}$.

Under H_{0} is $V \approx \chi_{1}^{2}$ (i.e. χ^{2}-distributed with 1 degree of freedom)

Go through all failure times $T_{(1)}, \cdots, T_{(k)}$ considering groups together:

	Group 1	Group 2	Total at $T_{(j)}$
\# at risk:	$N_{1 j}$	$N_{2 j}$	N_{j}
Obs \# fail at $T_{(j)}$	$O_{1 j}$	$O_{2 j}$	O_{j}
Est prob of fail under H_{0}	$\frac{O_{j}}{N_{j}}$	$\frac{O_{j}}{N_{j}}$	
Estim exp \# failures	$E_{1 j}=\frac{O_{j}}{N_{j}} \cdot N_{1 j}$	$E_{2 j}=\frac{O_{j}}{N_{j}} \cdot N_{2 j}$	

Then sum over all failure times $T_{(1)}, \cdots, T_{(k)}$:

$$
\begin{aligned}
& O_{1}=\sum_{j=1}^{k} O_{1 j}, E_{1}=\sum_{j=1}^{k} E_{1 j} \\
& O_{2}=\sum_{j=1}^{k} O_{2 j}, E_{2}=\sum_{j=1}^{k} E_{2 j}
\end{aligned}
$$

If more than two groups are compared, the table and the test statistic are extended in a natural way, while the degrees of freedom of the χ^{2}-distribution equals \# groups minus 1.

LOGRANK TEST FOR LEUKEMIA DATA

$C=$ Control group (Placebo)
$B=$ Treatment group (6MP)

Tin 1 1	Risk	Risk	Risk FailC FailB			Fail	EC		EB	
	21	21	42	2	0	2	$(2 / 42) * 21$	$=1$	$(2 / 42) * 21$	$=1$
2	19	21	40	2	0	2	$(2 / 40) * 19$	$=0.95$	$(2 / 40) * 21$	$=1.05$
3	17	21	38	1	0	1	$(1 / 38) * 17$	$=0.447$	$(1 / 38) * 21$	$=0.553$
4	16	21	37	2	0	2	$(2 / 37) * 16$	$=0.865$	$(2 / 37) * 21$	$=1.135$
13	4	12	16	0	1	1	$(1 / 16) * 4$	$=0.25$	$(1 / 16) * 12$	$=0.75$
23	1	6	7	1	1	2	$(2 / 7) * 1$	$=0.286$	$(2 / 7) * 6$	$=1.714$
Total				21	9			10.749		19.251

Test statistic:

$$
\begin{gathered}
\frac{\left(O_{C}-E_{C}\right)^{2}}{E_{C}}+\frac{\left(O_{B}-E_{B}\right)^{2}}{E_{B}} \\
=\frac{(21-10.749)^{2}}{10.749}+\frac{(9-19.251)^{2}}{19.251}=5.46+9.77=15.33
\end{gathered}
$$

