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EXTREME VALUE DISTRIBUTIONS

Let T1,T2, · · · ,Tn be lifetimes of n components, with ordered values
denoted by T(1) < T(2) < · · · < T(n). Thus T(1) is the minimum and
corresponds to the lifetime of a series system.

For large n, T(1) is approximately Weibull-distributed. This motivates the
widespread use of the Weibull-distribution!

If the Ti are no longer lifetimes, but have support in (−∞,∞), then the
limiting distribution of a properly normalized version of T(1) equals the
distribution of a random variable Y with cdf

FY (y) = 1− e−e
y−µ
σ , −∞ < y <∞

This is the so called “Distribution of smallest extreme”, or “Extreme value
distribution of type I”, or (which we will call it) the Gumbel-distribution;
Y ∼ Gumbel(µ, σ).

We write Y ∼ Gumbel(µ, σ)
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EXERCISE

Show that

FY (y) = 1− e−e
y−µ
σ , −∞ < y <∞

satisfies the requirements for a cdf, i.e.

Increasing in y

limy→−∞ FY (y) = 0

limy→∞ FY (y) = 1
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WHY ARE WE INTERESTED IN THE GUMBEL DISTRIBUTION?

If T is Weibull-distributed, T ∼Weib(α, θ), then Y = ln T is
Gumbel-distributed, Y ∼ Gumbel(µ, σ), with µ = ln θ, σ = 1/α.

Proof: Note first that T = eY and R(t) = P(T > t) = e−
(

t
θ

)α
. Then:

P(Y > y) = P(eY > ey ) = P(T > ey ) = R(ey )

= e−
(

ey

θ

)α
= e

−
(

ey

eln θ

)α
= e−(e

y−ln θ)α = e−e

(
y−ln θ
1/α

)
Thus, FY (y) = 1− P(Y > y) = 1− e−e

(
y−ln θ
1/α

)
, which shows that

Y ∼ Gumbel(ln θ, 1/α).

We shall see later why this is a useful and interesting result (and not just a
curiosity...)
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THE GUMBEL DISTRIBUTION

Let Y ∼ Gumbel(µ, σ) and recall the cdf

FY (y) = P(Y ≤ y) = 1− e−e
y−µ
σ for −∞ < y <∞

The cdf of Gumbel(0,1), called the standard Gumbel distribution, is

G (w) = 1− e−e
w

for −∞ < w <∞

Suppose W ∼ Gumbel(0, 1) and let

Y = µ+ σW

Then

FY (y) = P(Y ≤ y) = P(µ+ σW ≤ y) = P(W ≤ y − µ
σ

) = G

(
y − µ
σ

)
so Y ∼ Gumbel(µ, σ).
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THE GUMBEL DISTRIBUTION (CONT.)

Thus we can represent Y ∼ Gumbel(µ, σ) as

Y = µ+ σW

where W ∼ Gumbel(0, 1). Further,

FY (y) = P(Y ≤ y) = G

(
y − µ
σ

)
where G (·) is the cdf of Gumbel(0,1).

This defines the cdf of the Gumbel(µ, σ) in terms of the cdf of the
standard Gumbel, in the same way as the cdf of Y ∼ N(µ, σ) can be
expressed by the cdf of the standard normal.
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MORE ON THE STANDARD GUMBEL DISTRIBUTION

Recall once more that if W ∼ Gumbel(0, 1), then W has the cdf

G (w) = 1− e−e
w

The pdf of W is hence

g(w) = G ′(w) = −e−e
w

(−ew ) = ewe−e
w

We also have

E (W ) =

∫ ∞
−∞

wewe−e
w

dw = −γ,

where γ = −0.5772 is Euler’s constant.
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STANDARD GUMBEL AND NORMAL DISTRIBUTIONS
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GENERAL LOG-LOCATION-SCALE FAMILIES

We have seen:

T ∼ lognorm(µ, σ)⇐⇒ Y = ln T ∼ N(µ, σ)

T ∼Weib(α, θ)⇐⇒ Y = ln T ∼ Gumbel(µ, σ), with µ = ln θ, σ = 1/α.

Both distributions thus define log-location-scale families, which are
characterized by the fact that Y = ln T has a cdf which can be
expressed as

FY (y) = P(Y ≤ y) = Ψ

(
y − µ
σ

)
where Ψ(·) is the cdf of some “standardized distribution” on
(−∞,∞).

Equivalently, log-location-scale families are characterized by
representations

lnT = µ+ σU

where U has cdf Ψ(·) as described above.
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GENERAL LOG-LOCATION-SCALE FAMILIES (CONT.)

In the representation
lnT = µ+ σU,

U has a “standard” distribution with support (−∞,+∞),
(e.g. N(0, 1), Gumbel(0, 1))

µ ∈ (−∞,+∞) is called the location parameter

σ > 0 is called the scale parameter
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THE LOGISTIC AND LOG-LOGISTIC DISTRIBUTIONS

A random variable Y has the logistic distribution with location
parameter µ and scale parameter σ, written Y ∼ logistic(µ, σ), if

FY (y) = P(Y ≤ y) = H

(
y − µ
σ

)
for −∞ < y <∞

where

H(v) = P(V ≤ v) =
ev

1 + ev
for −∞ < v <∞

is the cdf of the standard logistic distribution, logistic(0,1).

A lifetime T has the log-logistic distribution with location parameter µ
and scale parameter σ if Y = ln T ∼ logistic(µ, σ). In this case we have
the representation

ln T = µ+ σV

where V ∼ logistic(0, 1).
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THE STANDARD LOGISTIC DISTRIBUTION

Recall that if V ∼ logistic(0, 1), then the cdf of V is
H(v) = P(V ≤ v) = ev

1+ev for −∞ < v <∞.

Hence the pdf of V is

h(v) = H ′(v) =
ev

(1 + ev )2
(do the differentiation!)

Like the standard normal, this density is symmetric around the y -axis
(which is not the case for the standard Gumbel).
Check this by showing that h(−v) = h(v) for all v .
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STANDARD LOGISTIC AND STANDARD NORMAL
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FUNCTIONS FOR LOG-LOCATION-SCALE FAMILIES

By assumption, Y = ln T has a cdf which can be expressed as

FY (y) = P(Y ≤ y) = Ψ

(
y − µ
σ

)
for −∞ < y <∞

where Ψ(·) is the cdf of a standard distribution. Let further ψ(u) = Ψ′(u).

Then

R(t) = P(T > t) = P(lnT > lnt) = 1−Ψ

(
lnt − µ
σ

)
f (t) = −R ′(t) = ψ

(
lnt − µ
σ

)
· 1

tσ

z(t) =
f (t)

R(t)
=
ψ
( lnt−µ

σ

)
/(tσ)

1−Ψ
( lnt−µ

σ

)
(as already obtained for the lognormal distribution).
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CONTENTS OF SLIDES 4

Extreme value distributions

Weibull-distribution
Gumbel distribtuion, Gumbel(µ, σ)

T ∼ Weibull(α, θ) ⇒ ln T ∼ Gumbel(ln θ, 1/α)

Thus:

Gumbel(µ, σ) is a location-scale family
Weibull(α, θ) is a log-location-scale family based on
Gumbel-distribution

General definition and properties of log-location-scale families

Another example: The logistic and log-logistic distributions
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